Exceeding Nernst limit (59mV/pH): CMOS-based pH sensor for autonomous applications

K. B. Parizi, A. J. Yeh, A. Poon, H. Wong
{"title":"Exceeding Nernst limit (59mV/pH): CMOS-based pH sensor for autonomous applications","authors":"K. B. Parizi, A. J. Yeh, A. Poon, H. Wong","doi":"10.1109/IEDM.2012.6479098","DOIUrl":null,"url":null,"abstract":"A highly sensitive field-effect sensor immune to environmental potential fluctuation is proposed. The sensor circuit consists of two sensors each with a charge sensing field effect transistor (FET) and an extended sensing gate (SG). By enlarging the sensing gate of an extended gate ISFET, a remarkable sensitivity of 130mV/pH is achieved, exceeding the conventional Nernst limit of 59mV/pH. The proposed differential sensing circuit consists of a pair of matching n-channel and p-channel ion sensitive sensors connected in parallel and biased at a matched transconductance bias point. Potential fluctuations in the electrolyte appear as common mode signal to the differential pair and are cancelled by the matched transistors. This novel differential measurement technique eliminates the need for a true reference electrode such as the bulky Ag/AgCl reference electrode and enables the use of the sensor for autonomous and implantable applications.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"36 1","pages":"24.7.1-24.7.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

A highly sensitive field-effect sensor immune to environmental potential fluctuation is proposed. The sensor circuit consists of two sensors each with a charge sensing field effect transistor (FET) and an extended sensing gate (SG). By enlarging the sensing gate of an extended gate ISFET, a remarkable sensitivity of 130mV/pH is achieved, exceeding the conventional Nernst limit of 59mV/pH. The proposed differential sensing circuit consists of a pair of matching n-channel and p-channel ion sensitive sensors connected in parallel and biased at a matched transconductance bias point. Potential fluctuations in the electrolyte appear as common mode signal to the differential pair and are cancelled by the matched transistors. This novel differential measurement technique eliminates the need for a true reference electrode such as the bulky Ag/AgCl reference electrode and enables the use of the sensor for autonomous and implantable applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超过能量限制(59mV/pH):基于cmos的pH传感器,用于自主应用
提出了一种不受环境电位波动影响的高灵敏度场效应传感器。传感器电路由两个传感器组成,每个传感器都有一个电荷传感场效应晶体管(FET)和一个扩展传感门(SG)。通过扩大扩展栅极ISFET的传感栅极,实现了130mV/pH的显著灵敏度,超过了常规的59mV/pH的能限。提出的差分传感电路由一对匹配的n通道和p通道离子敏感传感器组成,并联并在匹配的跨导偏置点偏置。电解液中的电位波动表现为差分对的共模信号,并被匹配的晶体管抵消。这种新颖的差分测量技术消除了对真正的参比电极(如笨重的Ag/AgCl参比电极)的需求,并使传感器能够用于自主和植入式应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the degradation of field-plate assisted RESURF power devices Effective Schottky Barrier Height modulation using dielectric dipoles for source/drain specific contact resistivity improvement Study of piezoresistive properties of advanced CMOS transistors: Thin film SOI, SiGe/SOI, unstrained and strained Tri-Gate Nanowires Design and performance of pseudo-spin-MOSFETs using nano-CMOS devices MOSFET performance and scalability enhancement by insertion of oxygen layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1