Advantage of silicon nitride gate insulator transistor by using microwave excited high-density plasma for applying 100nm technology node

S. Sugawa, I. Ohshima, H. Ishino, Y. Saito, M. Hirayama, T. Ohmi
{"title":"Advantage of silicon nitride gate insulator transistor by using microwave excited high-density plasma for applying 100nm technology node","authors":"S. Sugawa, I. Ohshima, H. Ishino, Y. Saito, M. Hirayama, T. Ohmi","doi":"10.1109/IEDM.2001.979639","DOIUrl":null,"url":null,"abstract":"We have succeeded to prepare a hgh quality silicon nitride gate insulator with lower gate leakage current in three orders of magnitude compared to that of conventional thermal oxide film, by using a Kr/NH3 mixed gas microwave-excited highdensity plasma with metal (TaN/Ta/TaN) gate. Moreover, we have evaluated the current drive capability dependence on the silicon surface orientation and found that the channel hole mobility on (110) surface at the channel-width direction of 13 5 degree from the (111) cut plane was 2.4 times hlgher than that of (100) surface. The CMOS transistor with the silicon nitride gate insulator formed by the microwave-excited plasma and TaN/Ta/TaN metal gate on (110) surface orientation silicon having a higher current drive capability and high integration density is the most practical candidate for lOOnm technology node and beyond.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"78 4 1","pages":"37.3_1-37.3_4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We have succeeded to prepare a hgh quality silicon nitride gate insulator with lower gate leakage current in three orders of magnitude compared to that of conventional thermal oxide film, by using a Kr/NH3 mixed gas microwave-excited highdensity plasma with metal (TaN/Ta/TaN) gate. Moreover, we have evaluated the current drive capability dependence on the silicon surface orientation and found that the channel hole mobility on (110) surface at the channel-width direction of 13 5 degree from the (111) cut plane was 2.4 times hlgher than that of (100) surface. The CMOS transistor with the silicon nitride gate insulator formed by the microwave-excited plasma and TaN/Ta/TaN metal gate on (110) surface orientation silicon having a higher current drive capability and high integration density is the most practical candidate for lOOnm technology node and beyond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用微波激发高密度等离子体的氮化硅栅极绝缘体晶体管应用于100nm技术节点的优势
利用Kr/NH3混合气体微波激发高密度等离子体和金属(TaN/Ta/TaN)栅极,成功制备了高质量的氮化硅栅极绝缘体,栅极漏电流比传统热氧化膜低3个数量级。此外,我们还评估了电流驱动能力与硅表面取向的关系,发现(110)表面在距离(111)切割平面13.5度的沟道宽度方向上的沟道孔迁移率是(100)表面的2.4倍。采用微波激发等离子体形成的氮化硅栅极绝缘体和(110)表面取向硅上的TaN/Ta/TaN金属栅极的CMOS晶体管具有更高的电流驱动能力和高集成度,是lOOnm技术节点及以后最实用的候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Base current tuning in SiGe HBT's by SiGe in the emitter Gate length scaling accelerated to 30 nm regime using ultra-thin film PD-SOI technology A high performance active pixel sensor with 0.18um CMOS color imager technology Visible electroluminescence from MOS capacitors with Si-implanted SiO/sub 2/ under dynamic operation Technologies for very high bandwidth electrical interconnects between next generation VLSI circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1