Electroless nickel/Immersion gold process on Aluminum alloy electrodes

S. Kawashima
{"title":"Electroless nickel/Immersion gold process on Aluminum alloy electrodes","authors":"S. Kawashima","doi":"10.1109/IMPACT.2011.6117175","DOIUrl":null,"url":null,"abstract":"Electronic equipment has changed to have higher performance with minimized in size. This trend required to electronic devices minimization also. Numerous packaging techniques have developed using metal flame, PWB material and plastic tape to mount semiconductor devices on PWB1). To achieve further high mounting density, the semiconductor device directly solder mounted on package after forming metal bumps on electrode of semiconductor devices. Aluminum alloy is common material for electrode of semiconductor devices, since it has relatively high conductivity, chemically stable and less reaction in semiconductor manufacturing process. However, it needs other meal layer for soldering to form bump on it. Sputtered Ti/Cu layer and electrolytic solder plating is widely used to form solder bump. However, this process requires longer and costly process such as multiple vacuum process, photo image process, etc.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"36 1","pages":"381-384"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic equipment has changed to have higher performance with minimized in size. This trend required to electronic devices minimization also. Numerous packaging techniques have developed using metal flame, PWB material and plastic tape to mount semiconductor devices on PWB1). To achieve further high mounting density, the semiconductor device directly solder mounted on package after forming metal bumps on electrode of semiconductor devices. Aluminum alloy is common material for electrode of semiconductor devices, since it has relatively high conductivity, chemically stable and less reaction in semiconductor manufacturing process. However, it needs other meal layer for soldering to form bump on it. Sputtered Ti/Cu layer and electrolytic solder plating is widely used to form solder bump. However, this process requires longer and costly process such as multiple vacuum process, photo image process, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝合金电极的化学镀镍/浸金工艺
电子设备已经改变为具有更高的性能和最小的尺寸。这种趋势也要求电子设备最小化。使用金属火焰、PWB材料和塑料胶带在PWB1上安装半导体器件的封装技术已经发展了许多。为了实现更高的安装密度,半导体器件在半导体器件的电极上形成金属凸起后直接焊接安装在封装上。铝合金具有导电性高、化学性质稳定、在半导体制造过程中反应少等优点,是半导体器件常用的电极材料。然而,它需要另一个粉层焊接,以形成凹凸。溅射Ti/Cu层和电解镀锡被广泛用于形成凸点。然而,这种工艺需要更长的时间和昂贵的工艺,如多次真空工艺,照片图像工艺等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison the reliability of small plated-through hole with different diameters under thermal stress Co-simulation of capacitive coupling pads assignment for capacitive coupling interconnection applications Microstructure evolution in a sandwich structure of Ni/SnAg/Ni microbump during reflow Comparison among individual thermal cycling, vibration test and the combined test for the life estimation of electronic components Limitations of gluing as a replacement of ultrasonic welding: Attaching Lithium battery contacts to PCBs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1