FPGA implementation of an ultra-high speed ADC interface

C. Sisterna, Marcelo J. Segura, Martin Guzzo, Gustavo Ensinck, Carlos Gil
{"title":"FPGA implementation of an ultra-high speed ADC interface","authors":"C. Sisterna, Marcelo J. Segura, Martin Guzzo, Gustavo Ensinck, Carlos Gil","doi":"10.1109/SPL.2011.5782642","DOIUrl":null,"url":null,"abstract":"Nowadays the need for dealing with ultra-high speed Analog to Digital Converter (ADC) is becoming more and more common, from Telecommunications to Precise Instrumentation, every application is increasing the analog to digital interface data rate. The ultra-high sampling rate of the ADCs demands the use of advanced acquisition techniques as well as the latest technology available. The utilization of dedicated Application Specific Integrated Circuit (ASIC) is an expensive solution to deal with the very high throughput from the ADC and its lack of flexibility is a huge drawback. On the other hand, the technology, the architecture and the state-of-the art of the current Field Programmable Gate Arrays (FPGAs) make them especially suitable to act as interface between an ultra-high speed ADC and a data processing unit. Another extra advantage is the reconfigurability of the FPGAs, they can be quickly adapted to different ADCs or different data processing units. The purpose of this paper is to present a practical approach to interface an ultra-high speed 8-bit ADC, MAX104, from Maxim Integrated Circuit, which performs digitalization of the input signal with a sampling rate of 1Gsps and a commercial and popular FPGA, the Virtex2 Pro, from Xilinx Corporation. Once the ADC digital data have been acquired, then they can be processed by either the dedicated FPGA Digital Signal Processing (DSP) blocks, or the FPGA embedded processors or just send the data out to a PC for later processing. Hence, the proposed method of implementation can be used as front-end of a wide range of applications.","PeriodicalId":6329,"journal":{"name":"2011 VII Southern Conference on Programmable Logic (SPL)","volume":"33 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 VII Southern Conference on Programmable Logic (SPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPL.2011.5782642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Nowadays the need for dealing with ultra-high speed Analog to Digital Converter (ADC) is becoming more and more common, from Telecommunications to Precise Instrumentation, every application is increasing the analog to digital interface data rate. The ultra-high sampling rate of the ADCs demands the use of advanced acquisition techniques as well as the latest technology available. The utilization of dedicated Application Specific Integrated Circuit (ASIC) is an expensive solution to deal with the very high throughput from the ADC and its lack of flexibility is a huge drawback. On the other hand, the technology, the architecture and the state-of-the art of the current Field Programmable Gate Arrays (FPGAs) make them especially suitable to act as interface between an ultra-high speed ADC and a data processing unit. Another extra advantage is the reconfigurability of the FPGAs, they can be quickly adapted to different ADCs or different data processing units. The purpose of this paper is to present a practical approach to interface an ultra-high speed 8-bit ADC, MAX104, from Maxim Integrated Circuit, which performs digitalization of the input signal with a sampling rate of 1Gsps and a commercial and popular FPGA, the Virtex2 Pro, from Xilinx Corporation. Once the ADC digital data have been acquired, then they can be processed by either the dedicated FPGA Digital Signal Processing (DSP) blocks, or the FPGA embedded processors or just send the data out to a PC for later processing. Hence, the proposed method of implementation can be used as front-end of a wide range of applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA实现的一个超高速ADC接口
如今,处理超高速模数转换器(ADC)的需求变得越来越普遍,从电信到精密仪器,每一个应用都在提高模拟到数字接口的数据速率。adc的超高采样率要求使用先进的采集技术以及最新的可用技术。专用专用集成电路(ASIC)的使用是一种昂贵的解决方案,以处理ADC的高吞吐量,其缺乏灵活性是一个巨大的缺点。另一方面,当前现场可编程门阵列(fpga)的技术、架构和最新技术使它们特别适合作为超高速ADC和数据处理单元之间的接口。另一个额外的优点是fpga的可重构性,它们可以快速适应不同的adc或不同的数据处理单元。本文的目的是提出一种实用的方法,将Maxim集成电路公司的超高速8位ADC MAX104与Xilinx公司的商用和流行的FPGA Virtex2 Pro进行接口,MAX104以1Gsps的采样率对输入信号进行数字化。一旦ADC数字数据被获取,那么它们可以由专用的FPGA数字信号处理(DSP)块或FPGA嵌入式处理器处理,或者只是将数据发送到PC机进行后续处理。因此,所提出的实现方法可以作为广泛应用程序的前端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using partial reconfigurability to aid debugging of FPGA designs Architecture driven memory allocation for FPGA based real-time video processing systems Soft error in FPGA-implemented asynchronous circuits Experiences applying framework-based functional verification to a design for programmable logic A FPGA IEEE-754-2008 decimal64 Floating-Point adder/subtractor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1