Deflection of Formula One Race Car Rear Wing using Numerical Simulations

Sai Hemanth Kumar V
{"title":"Deflection of Formula One Race Car Rear Wing using Numerical Simulations","authors":"Sai Hemanth Kumar V","doi":"10.35940/ijeat.a3800.1012122","DOIUrl":null,"url":null,"abstract":"Formula One is a track-based aerodynamic race between teams. In the design of motorsport cars, aerodynamics is crucial. When compared to the other race cars on the grid, the race car with the best aerodynamic performance performs well on the track and has a good lap time. The design of rear wing has significant influence on the performance of a race car as much of the downforce is provided by rear wing. Using structural and computational models, this paper tries to link the static and dynamic performance of a Formula 1 race car rear wing due to its deflection. Solidworks is used to design a rear wing model of an F-1 car, which is then transferred to Ansys. A speed of 300 kmph is considerd for the study as speed of F-1 cars range from 280 – 340 kmph on Straights. To determine the aerodynamic loadings on the model at 300 kmph, a fluid simulation is run in fluent. Turbulence model of Transition K- Kl- Omega was used. To determine deflection owing to the aerodynamic loads calculated, a structural analysis is performed in Ansys Static Structural. From structural analysis it is evident that deflection exists. Further computational simulations of deflected models about its center of gravity are performed to compare the effects of aeroelasticity of a race car’s rear wing. It is evident from the simulations that a 2 deflection in the wing resulted in a 3 % decrease in drag and a 4 % decrease in downforce which gives a higher performance gain in case of high-speed race cars.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.a3800.1012122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Formula One is a track-based aerodynamic race between teams. In the design of motorsport cars, aerodynamics is crucial. When compared to the other race cars on the grid, the race car with the best aerodynamic performance performs well on the track and has a good lap time. The design of rear wing has significant influence on the performance of a race car as much of the downforce is provided by rear wing. Using structural and computational models, this paper tries to link the static and dynamic performance of a Formula 1 race car rear wing due to its deflection. Solidworks is used to design a rear wing model of an F-1 car, which is then transferred to Ansys. A speed of 300 kmph is considerd for the study as speed of F-1 cars range from 280 – 340 kmph on Straights. To determine the aerodynamic loadings on the model at 300 kmph, a fluid simulation is run in fluent. Turbulence model of Transition K- Kl- Omega was used. To determine deflection owing to the aerodynamic loads calculated, a structural analysis is performed in Ansys Static Structural. From structural analysis it is evident that deflection exists. Further computational simulations of deflected models about its center of gravity are performed to compare the effects of aeroelasticity of a race car’s rear wing. It is evident from the simulations that a 2 deflection in the wing resulted in a 3 % decrease in drag and a 4 % decrease in downforce which gives a higher performance gain in case of high-speed race cars.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一级方程式赛车尾翼偏转的数值模拟
f1是车队之间基于赛道的空气动力学比赛。在赛车设计中,空气动力学是至关重要的。与发车区的其他赛车相比,空气动力学性能最好的赛车在赛道上表现出色,圈速也不错。尾翼的设计对赛车的性能有着重要的影响,因为大部分的下压力都是由尾翼提供的。本文采用结构模型和计算模型,试图将f1赛车尾翼偏转引起的静、动性能联系起来。Solidworks用于设计F-1汽车的尾翼模型,然后将其转移到Ansys中。考虑到F-1汽车在直道上的速度在280 - 340公里/小时,因此研究中考虑的速度为300公里/小时。为了确定模型在300kmph时的气动载荷,进行了fluent流体仿真。采用K- Kl- Omega过渡湍流模型。为了确定气动载荷引起的挠度,在Ansys静力结构软件中进行了结构分析。从结构分析来看,明显存在挠度。进一步进行了重心偏转模型的计算仿真,比较了赛车尾翼气动弹性的影响。从模拟中可以明显看出,机翼2的偏转导致阻力减少3%,下压力减少4%,这在高速赛车的情况下可以获得更高的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Car Door Sound Quality Assessment - A Review for NVH Performance Research Airport Runway Crack Detection to Classify and Densify Surface Crack Type Computer-Aided Diagnosis System for Automated Detection of Mri Brain Tumors Smart Artificial Intelligence System for Heart Disease Prediction A Comprehensive Study on Failure Modes and Mechanisms of Thin Film Chip Resistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1