N. Kim, R. Burgess, B. Stanbery, R. Mickelsen, J. Avery, R. McClelland, B. King, M. Boden, R. Gale
{"title":"High efficiency GaAs/CuInSe/sub 2/ tandem junction solar cells","authors":"N. Kim, R. Burgess, B. Stanbery, R. Mickelsen, J. Avery, R. McClelland, B. King, M. Boden, R. Gale","doi":"10.1109/PVSC.1988.105743","DOIUrl":null,"url":null,"abstract":"High-efficiency, mechanically stacked tandem junction solar cells based on a double-heterostructure GaAs single-crystal thin-film top cell and a polycrystalline CuInSe/sub 2/ (CIS) thin-film bottom cell were developed to meet the power needs projected for future spacecraft. The best performance of these tandem cells achieved so far is 21.3% AM0, one sun, for a 1 cm/sup 2/ four-terminal device at 28 degrees C. A GaAs subcell efficiency of 18.8% and a CuInSe/sub 2/ subcell efficiency of 2.5% were measured for this device. Top cell efficiency up to 19.5% and lower cell efficiency up to 2.83% were measured for other tandem cells. A 3.0% CIS cell was achieved using a GaAs filter with a glycerol optical matching medium. This demonstrated efficiency provides for specific powers up to 620 W/kg when 50 mu m thick substrate and cover glasses are incorporated. Favorable results were obtained from thermal cycling experiments conducted to evaluate survivability of thin GaAs films in adhesive/glass sandwich structures.<<ETX>>","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"49 1","pages":"457-461 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
High-efficiency, mechanically stacked tandem junction solar cells based on a double-heterostructure GaAs single-crystal thin-film top cell and a polycrystalline CuInSe/sub 2/ (CIS) thin-film bottom cell were developed to meet the power needs projected for future spacecraft. The best performance of these tandem cells achieved so far is 21.3% AM0, one sun, for a 1 cm/sup 2/ four-terminal device at 28 degrees C. A GaAs subcell efficiency of 18.8% and a CuInSe/sub 2/ subcell efficiency of 2.5% were measured for this device. Top cell efficiency up to 19.5% and lower cell efficiency up to 2.83% were measured for other tandem cells. A 3.0% CIS cell was achieved using a GaAs filter with a glycerol optical matching medium. This demonstrated efficiency provides for specific powers up to 620 W/kg when 50 mu m thick substrate and cover glasses are incorporated. Favorable results were obtained from thermal cycling experiments conducted to evaluate survivability of thin GaAs films in adhesive/glass sandwich structures.<>