Tan Lu, Han Gu, Yougen Hu, T. Zhao, Pengli Zhu, R. Sun, C. Wong
{"title":"Three Dimensional Copper Foam-Filled Elastic Conductive Composites with Simultaneously Enhanced Mechanical, Electrical, Thermal and Electromagnetic Interference (EMI) Shielding Properties","authors":"Tan Lu, Han Gu, Yougen Hu, T. Zhao, Pengli Zhu, R. Sun, C. Wong","doi":"10.1109/ECTC.2019.00295","DOIUrl":null,"url":null,"abstract":"With the rapid growth of modern electronic devices towards higher power, higher integration, thinner, lighter, and smaller, electrical and thermal conductive as well as electromagnetic interference (EMI) shielding issues are attracted more and more concerns. Thermal interface materials (TIMs) with high thermal conductivity and excellent EMI shielding efficiency are desired to solve heat emission and EMI problems of the electronic devices. So far, most of studies were independently focused on TIMs or EMI shielding materials, which have many limits for some practical applications. In this work, to address the challenges, a unique material with above dual functions was developed. The material composed of Cu foam skeleton and filled thermoplastic polyurethane/silver (TPU/Ag) elastic conductive composite, which shows better mechanical flexibility, higher thermal conductivity and higher EMI shielding effectiveness compared with sole Cu foam or TPU/Ag composite. The outstanding performance of the Cu foam/TPU/Ag composite will see a promising application in the EMI shielding and heat management of electronic devices.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"46 1","pages":"1916-1920"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
With the rapid growth of modern electronic devices towards higher power, higher integration, thinner, lighter, and smaller, electrical and thermal conductive as well as electromagnetic interference (EMI) shielding issues are attracted more and more concerns. Thermal interface materials (TIMs) with high thermal conductivity and excellent EMI shielding efficiency are desired to solve heat emission and EMI problems of the electronic devices. So far, most of studies were independently focused on TIMs or EMI shielding materials, which have many limits for some practical applications. In this work, to address the challenges, a unique material with above dual functions was developed. The material composed of Cu foam skeleton and filled thermoplastic polyurethane/silver (TPU/Ag) elastic conductive composite, which shows better mechanical flexibility, higher thermal conductivity and higher EMI shielding effectiveness compared with sole Cu foam or TPU/Ag composite. The outstanding performance of the Cu foam/TPU/Ag composite will see a promising application in the EMI shielding and heat management of electronic devices.