Hub genes and pathways in gastric cancer: A comparison between studies that used normal tissues adjacent to the tumour and studies that used healthy tissues as calibrator
{"title":"Hub genes and pathways in gastric cancer: A comparison between studies that used normal tissues adjacent to the tumour and studies that used healthy tissues as calibrator","authors":"Khadijeh Sadegh, Amirhossein Ahmadi","doi":"10.1049/syb2.12065","DOIUrl":null,"url":null,"abstract":"<p>Several bioinformatics studies have been performed on high-throughput expression data to determine the cellular pathways and hub genes affected by Gastric cancer (GC). However, these studies differ in using a healthy tissue or normal tissue adjacent to the tumour (NAT) as calibrator tissues. This study was designed to find how using healthy or NAT tissues as calibrator tissues could affect pathway enrichment data and hub genes in GC. Two gene expression datasets with NAT tissues (GSE79973 and GSE118916) and one dataset with healthy tissues (GSE54129) were downloaded and processed by the limma package to screen the differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis were performed by the Enrichr online tool. Protein-protein interaction network construction, module analysis, and hub genes selection were performed by Cytoscape software, Molecular Complex Detection plugin, and cytoHubba plugin, respectively. The gene expression profiling interactive analysis web server was used to analyse RNA sequencing expression data from The Cancer Genome Atlas Program. The Kaplan—Meier plotter was used to perform survival analysis. Our results showed that some KEGG and GO pathways were shared between studies with NAT and the study with healthy tissues. However, some terms, especially inflammation-related terms, were missed when NAT tissues were used as calibrator tissues. Also, only <i>FN1</i> and <i>COL1A1</i> are common hub genes between DEGs of the studies with NAT and healthy tissues. Since hub genes are usually extracted and suggested as candidate targets for GC diagnosis, prognosis, or treatment, selecting healthy or NAT tissues may affect the hub genes selection.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 3","pages":"131-141"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several bioinformatics studies have been performed on high-throughput expression data to determine the cellular pathways and hub genes affected by Gastric cancer (GC). However, these studies differ in using a healthy tissue or normal tissue adjacent to the tumour (NAT) as calibrator tissues. This study was designed to find how using healthy or NAT tissues as calibrator tissues could affect pathway enrichment data and hub genes in GC. Two gene expression datasets with NAT tissues (GSE79973 and GSE118916) and one dataset with healthy tissues (GSE54129) were downloaded and processed by the limma package to screen the differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis were performed by the Enrichr online tool. Protein-protein interaction network construction, module analysis, and hub genes selection were performed by Cytoscape software, Molecular Complex Detection plugin, and cytoHubba plugin, respectively. The gene expression profiling interactive analysis web server was used to analyse RNA sequencing expression data from The Cancer Genome Atlas Program. The Kaplan—Meier plotter was used to perform survival analysis. Our results showed that some KEGG and GO pathways were shared between studies with NAT and the study with healthy tissues. However, some terms, especially inflammation-related terms, were missed when NAT tissues were used as calibrator tissues. Also, only FN1 and COL1A1 are common hub genes between DEGs of the studies with NAT and healthy tissues. Since hub genes are usually extracted and suggested as candidate targets for GC diagnosis, prognosis, or treatment, selecting healthy or NAT tissues may affect the hub genes selection.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.