Enhancement of ocular anti-glaucomic activity of agomelatine through fabrication of hyaluronic acid modified-elastosomes: formulation, statistical optimisation, in vitro characterisation, histopathological study, and in vivo assessment.
Asmaa Ashraf Nemr, Galal Mohamed El-Mahrouk, Hany Abdo Badie
{"title":"Enhancement of ocular anti-glaucomic activity of agomelatine through fabrication of hyaluronic acid modified-elastosomes: formulation, statistical optimisation<i>, in vitro</i> characterisation, histopathological study, and <i>in vivo</i> assessment.","authors":"Asmaa Ashraf Nemr, Galal Mohamed El-Mahrouk, Hany Abdo Badie","doi":"10.1080/02652048.2023.2215326","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of this manuscript was to fabricate agomelatine (AGM) loaded elastosomes to improve its corneal permeation and ocular bioavailability. AGM is a biopharmaceutical classification system (BCS) class II with low water solubility and high membrane permeability. It has a potent agonistic action on melatonin receptors, so it is used for glaucoma treatment.</p><p><strong>Methods: </strong>Elastosomes were made using modified ethanol injection technique according to a 2<sup>2</sup> × 4<sup>1</sup> full factorial design. The chosen factors were: edge activators (EAs) type, surfactant percent (SAA %w/w), and cholesterol:surfactant ratio (CH:SAA ratio). The studied responses were encapsulation efficiency percent (EE%), mean diameter, polydispersity index (PDI), zeta potential (ZP), percentage of drug released after two hours (<i>Q</i><sub>2h%</sub>), and 24 hours (<i>Q</i><sub>24h%</sub>).</p><p><strong>Results: </strong>The optimum formula with the desirability of 0.752 was composed of Brij98 as EA type, 15%w/w SAA%, and 1:1 CH:SAA ratio. It revealed EE% of 73.22%w/v and mean diameter, PDI, ZP, <i>Q</i><sub>2h%</sub>, and <i>Q</i><sub>24h%</sub> values of 484.25 nm, 0.31, -30.75 mV, 32.7%w/v, and 75.6%w/v, respectively. It demonstrated acceptable stability for three months and superior elasticity than its conventional liposome. The histopathological study ensured the tolerability of its ophthalmic application. Also, it was proven to be safe from the results of the pH and refractive index tests. The <i>in vivo</i> pharmacodynamic parameters of the optimum formula revealed dominance in a maximum % decrease in intraocular pressure (IOP), the area under the IOP response curve, and mean residence time with the value of 82.73%w/v, 820.69%h, and 13.98 h compared to that of the AGM solution (35.92%w/v, 181.30%h, and 7.52 h).</p><p><strong>Conclusions: </strong>Elastosomes can be a promising option to improve AGM ocular bioavailability.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 6","pages":"423-441"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2215326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The aim of this manuscript was to fabricate agomelatine (AGM) loaded elastosomes to improve its corneal permeation and ocular bioavailability. AGM is a biopharmaceutical classification system (BCS) class II with low water solubility and high membrane permeability. It has a potent agonistic action on melatonin receptors, so it is used for glaucoma treatment.
Methods: Elastosomes were made using modified ethanol injection technique according to a 22 × 41 full factorial design. The chosen factors were: edge activators (EAs) type, surfactant percent (SAA %w/w), and cholesterol:surfactant ratio (CH:SAA ratio). The studied responses were encapsulation efficiency percent (EE%), mean diameter, polydispersity index (PDI), zeta potential (ZP), percentage of drug released after two hours (Q2h%), and 24 hours (Q24h%).
Results: The optimum formula with the desirability of 0.752 was composed of Brij98 as EA type, 15%w/w SAA%, and 1:1 CH:SAA ratio. It revealed EE% of 73.22%w/v and mean diameter, PDI, ZP, Q2h%, and Q24h% values of 484.25 nm, 0.31, -30.75 mV, 32.7%w/v, and 75.6%w/v, respectively. It demonstrated acceptable stability for three months and superior elasticity than its conventional liposome. The histopathological study ensured the tolerability of its ophthalmic application. Also, it was proven to be safe from the results of the pH and refractive index tests. The in vivo pharmacodynamic parameters of the optimum formula revealed dominance in a maximum % decrease in intraocular pressure (IOP), the area under the IOP response curve, and mean residence time with the value of 82.73%w/v, 820.69%h, and 13.98 h compared to that of the AGM solution (35.92%w/v, 181.30%h, and 7.52 h).
Conclusions: Elastosomes can be a promising option to improve AGM ocular bioavailability.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.