胶质瘤中dolichyl二磷酸低聚糖蛋白糖基转移酶的免疫相关多组学分析:预后价值探索和竞争性内源性RNA网络鉴定。

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2023-08-22 DOI:10.1049/syb2.12075
Jie Liu, Chao Feng, Min Liu, Yan Zhou, Yuezhen Shen, Jianxin Li, Xiangyang Wei
{"title":"胶质瘤中dolichyl二磷酸低聚糖蛋白糖基转移酶的免疫相关多组学分析:预后价值探索和竞争性内源性RNA网络鉴定。","authors":"Jie Liu,&nbsp;Chao Feng,&nbsp;Min Liu,&nbsp;Yan Zhou,&nbsp;Yuezhen Shen,&nbsp;Jianxin Li,&nbsp;Xiangyang Wei","doi":"10.1049/syb2.12075","DOIUrl":null,"url":null,"abstract":"<p>Dolichyl-diphosphooligosaccharide protein glycosyltransferase (DDOST) plays a pivotal role in the glycosylation of asparagine residues on nascent polypeptides. However, the biological role of DDOST in glioma remains unclear. The mRNA expression of DDOST in glioma was identified using TCGA, CGGA, GEO and Rembrandt datasets. Immunohistochemistry assay was conducted to examine the protein level of DDOST. Cox regression analysis, nomograms and calibration plots were used to evaluate the prognostic value of DDOST. The association between DDOST and immune cell infiltration was evaluated using CIBERSORT algorithm. Additionally, DNA methylation and ceRNA regulatory network of DDOST expression were investigated using the LinkedOmics and ENCORI databases. The authors found that DDOST was substantially expressed at the mRNA and protein levels. Functional enrichment analysis revealed close associations between DDOST and immune-related pathways, as well as immune cell infiltration. In addition, DDOST exhibited synergistic effects with tumour mutational burden (TMB) and other immune checkpoints. For expression regulation mechanisms, DDOST had low DNA methylation levels in high-grade gliomas and may be involved in multiple ceRNA networks in glioma. Thus, DDOST may serve as an unfavourable biomarker for gliomas. DNA methylation and ceRNA regulatory networks of DDOST expression were identified for the first time in this multi-omics study.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 5","pages":"271-287"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12075","citationCount":"0","resultStr":"{\"title\":\"An immune-related multi-omics analysis of dolichyl-diphosphooligosaccharide protein glycosyltransferase in glioma: Prognostic value exploration and competitive endogenous RNA network identification\",\"authors\":\"Jie Liu,&nbsp;Chao Feng,&nbsp;Min Liu,&nbsp;Yan Zhou,&nbsp;Yuezhen Shen,&nbsp;Jianxin Li,&nbsp;Xiangyang Wei\",\"doi\":\"10.1049/syb2.12075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dolichyl-diphosphooligosaccharide protein glycosyltransferase (DDOST) plays a pivotal role in the glycosylation of asparagine residues on nascent polypeptides. However, the biological role of DDOST in glioma remains unclear. The mRNA expression of DDOST in glioma was identified using TCGA, CGGA, GEO and Rembrandt datasets. Immunohistochemistry assay was conducted to examine the protein level of DDOST. Cox regression analysis, nomograms and calibration plots were used to evaluate the prognostic value of DDOST. The association between DDOST and immune cell infiltration was evaluated using CIBERSORT algorithm. Additionally, DNA methylation and ceRNA regulatory network of DDOST expression were investigated using the LinkedOmics and ENCORI databases. The authors found that DDOST was substantially expressed at the mRNA and protein levels. Functional enrichment analysis revealed close associations between DDOST and immune-related pathways, as well as immune cell infiltration. In addition, DDOST exhibited synergistic effects with tumour mutational burden (TMB) and other immune checkpoints. For expression regulation mechanisms, DDOST had low DNA methylation levels in high-grade gliomas and may be involved in multiple ceRNA networks in glioma. Thus, DDOST may serve as an unfavourable biomarker for gliomas. DNA methylation and ceRNA regulatory networks of DDOST expression were identified for the first time in this multi-omics study.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"17 5\",\"pages\":\"271-287\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12075\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12075","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Dolichyl二磷酸低聚糖蛋白糖基转移酶(DDOST)在新生多肽上天冬酰胺残基的糖基化中起着关键作用。然而,DDOST在神经胶质瘤中的生物学作用尚不清楚。使用TCGA、CGGA、GEO和Rembrandt数据集鉴定神经胶质瘤中DDOST的mRNA表达。免疫组化法检测DDOST蛋白水平。Cox回归分析、列线图和校准图用于评估DDOST的预后价值。使用CIBERSORT算法评估DDOST与免疫细胞浸润之间的相关性。此外,使用LinkedOmics和ENCORI数据库研究了DDOST表达的DNA甲基化和ceRNA调控网络。作者发现DDOST在mRNA和蛋白质水平上都有显著表达。功能富集分析揭示了DDOST与免疫相关途径以及免疫细胞浸润之间的密切联系。此外,DDOST与肿瘤突变负荷(TMB)和其他免疫检查点表现出协同作用。就表达调控机制而言,DDOST在高级别胶质瘤中具有较低的DNA甲基化水平,并且可能参与胶质瘤中的多个ceRNA网络。因此,DDOST可能是胶质瘤的不利生物标志物。在这项多组学研究中,首次鉴定了DDOST表达的DNA甲基化和ceRNA调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An immune-related multi-omics analysis of dolichyl-diphosphooligosaccharide protein glycosyltransferase in glioma: Prognostic value exploration and competitive endogenous RNA network identification

Dolichyl-diphosphooligosaccharide protein glycosyltransferase (DDOST) plays a pivotal role in the glycosylation of asparagine residues on nascent polypeptides. However, the biological role of DDOST in glioma remains unclear. The mRNA expression of DDOST in glioma was identified using TCGA, CGGA, GEO and Rembrandt datasets. Immunohistochemistry assay was conducted to examine the protein level of DDOST. Cox regression analysis, nomograms and calibration plots were used to evaluate the prognostic value of DDOST. The association between DDOST and immune cell infiltration was evaluated using CIBERSORT algorithm. Additionally, DNA methylation and ceRNA regulatory network of DDOST expression were investigated using the LinkedOmics and ENCORI databases. The authors found that DDOST was substantially expressed at the mRNA and protein levels. Functional enrichment analysis revealed close associations between DDOST and immune-related pathways, as well as immune cell infiltration. In addition, DDOST exhibited synergistic effects with tumour mutational burden (TMB) and other immune checkpoints. For expression regulation mechanisms, DDOST had low DNA methylation levels in high-grade gliomas and may be involved in multiple ceRNA networks in glioma. Thus, DDOST may serve as an unfavourable biomarker for gliomas. DNA methylation and ceRNA regulatory networks of DDOST expression were identified for the first time in this multi-omics study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
DDANet: A deep dilated attention network for intracerebral haemorrhage segmentation. Human essential gene identification based on feature fusion and feature screening. Inference and analysis of cell-cell communication of non-myeloid circulating cells in late sepsis based on single-cell RNA-seq. siRNAEfficacyDB: An experimentally supported small interfering RNA efficacy database. Deep-GB: A novel deep learning model for globular protein prediction using CNN-BiLSTM architecture and enhanced PSSM with trisection strategy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1