D. Guo, D. Brinkman, T. Fang, R. Akis, I. Sankin, D. Vasileska, C. Ringhofer
{"title":"CdTe太阳能器件中Cu迁移的扩散反应模型","authors":"D. Guo, D. Brinkman, T. Fang, R. Akis, I. Sankin, D. Vasileska, C. Ringhofer","doi":"10.1109/IWCE.2015.7301962","DOIUrl":null,"url":null,"abstract":"In this work, we report on development of one-dimensional (1D) finite-difference and two-dimensional (2D) finite-element diffusion-reaction simulators to investigate mechanisms behind Cu-related metastabilities observed in CdTe solar cells [1]. The evolution of CdTe solar cells performance has been studied as a function of stress time in response to the evolution of associated acceptor and donor states. To achieve such capability, the simulators solve reaction-diffusion equations for the defect states in time-space domain self-consistently with the free carrier transport. Results of 1-D and 2-D simulations have been compared to verify the accuracy of solutions.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"6 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-reaction modeling of Cu migration in CdTe solar devices\",\"authors\":\"D. Guo, D. Brinkman, T. Fang, R. Akis, I. Sankin, D. Vasileska, C. Ringhofer\",\"doi\":\"10.1109/IWCE.2015.7301962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we report on development of one-dimensional (1D) finite-difference and two-dimensional (2D) finite-element diffusion-reaction simulators to investigate mechanisms behind Cu-related metastabilities observed in CdTe solar cells [1]. The evolution of CdTe solar cells performance has been studied as a function of stress time in response to the evolution of associated acceptor and donor states. To achieve such capability, the simulators solve reaction-diffusion equations for the defect states in time-space domain self-consistently with the free carrier transport. Results of 1-D and 2-D simulations have been compared to verify the accuracy of solutions.\",\"PeriodicalId\":165023,\"journal\":{\"name\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"6 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2015.7301962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffusion-reaction modeling of Cu migration in CdTe solar devices
In this work, we report on development of one-dimensional (1D) finite-difference and two-dimensional (2D) finite-element diffusion-reaction simulators to investigate mechanisms behind Cu-related metastabilities observed in CdTe solar cells [1]. The evolution of CdTe solar cells performance has been studied as a function of stress time in response to the evolution of associated acceptor and donor states. To achieve such capability, the simulators solve reaction-diffusion equations for the defect states in time-space domain self-consistently with the free carrier transport. Results of 1-D and 2-D simulations have been compared to verify the accuracy of solutions.