{"title":"用于晶圆级集成的恒几何FFT阵列测试","authors":"J. Salinas, C. Feng, F. Lombardi","doi":"10.1109/ICWSI.1993.255258","DOIUrl":null,"url":null,"abstract":"Two approaches for testing constant-geometry wafer scale integration (WSI) array architectures used in the computation of the complex N-point fast Fourier transform (FFT) under a single combinational fault model are presented. Initially, an unrestricted single cell-level fault model is considered. The first approach is based on a process whose complexity is independent of the number of cells in the FFT architecture. The second method is based on a testing process whose complexity is linear with respect to the number of stages (columns) of the FFT array. No additional hardware is required in this case. A component-level fault model is also proposed and analyzed.<<ETX>>","PeriodicalId":377227,"journal":{"name":"1993 Proceedings Fifth Annual IEEE International Conference on Wafer Scale Integration","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing constant-geometry FFT arrays for wafer scale integration\",\"authors\":\"J. Salinas, C. Feng, F. Lombardi\",\"doi\":\"10.1109/ICWSI.1993.255258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two approaches for testing constant-geometry wafer scale integration (WSI) array architectures used in the computation of the complex N-point fast Fourier transform (FFT) under a single combinational fault model are presented. Initially, an unrestricted single cell-level fault model is considered. The first approach is based on a process whose complexity is independent of the number of cells in the FFT architecture. The second method is based on a testing process whose complexity is linear with respect to the number of stages (columns) of the FFT array. No additional hardware is required in this case. A component-level fault model is also proposed and analyzed.<<ETX>>\",\"PeriodicalId\":377227,\"journal\":{\"name\":\"1993 Proceedings Fifth Annual IEEE International Conference on Wafer Scale Integration\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 Proceedings Fifth Annual IEEE International Conference on Wafer Scale Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWSI.1993.255258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 Proceedings Fifth Annual IEEE International Conference on Wafer Scale Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWSI.1993.255258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing constant-geometry FFT arrays for wafer scale integration
Two approaches for testing constant-geometry wafer scale integration (WSI) array architectures used in the computation of the complex N-point fast Fourier transform (FFT) under a single combinational fault model are presented. Initially, an unrestricted single cell-level fault model is considered. The first approach is based on a process whose complexity is independent of the number of cells in the FFT architecture. The second method is based on a testing process whose complexity is linear with respect to the number of stages (columns) of the FFT array. No additional hardware is required in this case. A component-level fault model is also proposed and analyzed.<>