{"title":"锁相IR-OBIRCH结合光子发射显微镜的栅氧化物断裂定位","authors":"Chunlei Wu, S. Yao","doi":"10.1109/IPFA.2014.6898121","DOIUrl":null,"url":null,"abstract":"There are many failure analysis cases are induced by the gate oxide rupture. It is a common and important failure mechanism in failure analysis. Photon emission microscopy with the combination of Lock-in IR-OBIRCH are very effective to localize the gate oxide rupture in MOS transistor, which can decrease analysis cycle time and improve success rates remarkably. In this paper, some different cases are presented to show how to locate the gate oxide rupture in MOS transistor accurately and quickly by photon emission microscopy with the combination of Lock-in IR-OBIRCH.","PeriodicalId":409316,"journal":{"name":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gate oxide rupture localization by photon emission microscopy with the combination of Lock-in IR-OBIRCH\",\"authors\":\"Chunlei Wu, S. Yao\",\"doi\":\"10.1109/IPFA.2014.6898121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many failure analysis cases are induced by the gate oxide rupture. It is a common and important failure mechanism in failure analysis. Photon emission microscopy with the combination of Lock-in IR-OBIRCH are very effective to localize the gate oxide rupture in MOS transistor, which can decrease analysis cycle time and improve success rates remarkably. In this paper, some different cases are presented to show how to locate the gate oxide rupture in MOS transistor accurately and quickly by photon emission microscopy with the combination of Lock-in IR-OBIRCH.\",\"PeriodicalId\":409316,\"journal\":{\"name\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2014.6898121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2014.6898121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gate oxide rupture localization by photon emission microscopy with the combination of Lock-in IR-OBIRCH
There are many failure analysis cases are induced by the gate oxide rupture. It is a common and important failure mechanism in failure analysis. Photon emission microscopy with the combination of Lock-in IR-OBIRCH are very effective to localize the gate oxide rupture in MOS transistor, which can decrease analysis cycle time and improve success rates remarkably. In this paper, some different cases are presented to show how to locate the gate oxide rupture in MOS transistor accurately and quickly by photon emission microscopy with the combination of Lock-in IR-OBIRCH.