M. Hafich, J. Quigley, R. E. Owens, G. Y. Robinson, Du Li, N. Ōtsuka
{"title":"分子束外延生长InGaP/GaAs的高质量量子阱","authors":"M. Hafich, J. Quigley, R. E. Owens, G. Y. Robinson, Du Li, N. Ōtsuka","doi":"10.1063/1.101035","DOIUrl":null,"url":null,"abstract":"The materials system AlGaAs/GaAs has been used extensively for synthesis of quantum well (QW) optoelectronic devices. The III-V alloy InGaP provides an alternative to AlGaAs for confinement of GaAs QWs. At the composition for lattice matching to GaAs, In0.48Ga0.52P exhibits a room temperature bandgap of 1.89 eV, somewhat larger than that of Al0.3Ga0.7As, and the In0.48Ga0.52P/GaAs valence band offset (ΔEv) is about 0.3 eV, larger than that of the Al0.3Ga0.52As/GaAs heterojunction. Furthermore, InGaP exhibits a lower concentration of deep levels than AlGaAs, and InGaP does not oxidize as readily as AlGaAs. InGaP/GaAs QWs have been previously reported by Razeghi et al., who used metalorganic chemical vapor deposition to grow wells as narrow as 15Å(1) We report here the growth of InGaP/GaAs QWs by gas-source molecular beam epitaxy (GSMBE). Single QWs as narrow as 6Å and multiple QW superlattices with abrupt interfaces are described.","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"High Quality Quantum Wells of InGaP/GaAs Grown by Molecular Beam Epitaxy\",\"authors\":\"M. Hafich, J. Quigley, R. E. Owens, G. Y. Robinson, Du Li, N. Ōtsuka\",\"doi\":\"10.1063/1.101035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The materials system AlGaAs/GaAs has been used extensively for synthesis of quantum well (QW) optoelectronic devices. The III-V alloy InGaP provides an alternative to AlGaAs for confinement of GaAs QWs. At the composition for lattice matching to GaAs, In0.48Ga0.52P exhibits a room temperature bandgap of 1.89 eV, somewhat larger than that of Al0.3Ga0.7As, and the In0.48Ga0.52P/GaAs valence band offset (ΔEv) is about 0.3 eV, larger than that of the Al0.3Ga0.52As/GaAs heterojunction. Furthermore, InGaP exhibits a lower concentration of deep levels than AlGaAs, and InGaP does not oxidize as readily as AlGaAs. InGaP/GaAs QWs have been previously reported by Razeghi et al., who used metalorganic chemical vapor deposition to grow wells as narrow as 15Å(1) We report here the growth of InGaP/GaAs QWs by gas-source molecular beam epitaxy (GSMBE). Single QWs as narrow as 6Å and multiple QW superlattices with abrupt interfaces are described.\",\"PeriodicalId\":205579,\"journal\":{\"name\":\"Quantum Wells for Optics and Optoelectronics\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Wells for Optics and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.101035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.101035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Quality Quantum Wells of InGaP/GaAs Grown by Molecular Beam Epitaxy
The materials system AlGaAs/GaAs has been used extensively for synthesis of quantum well (QW) optoelectronic devices. The III-V alloy InGaP provides an alternative to AlGaAs for confinement of GaAs QWs. At the composition for lattice matching to GaAs, In0.48Ga0.52P exhibits a room temperature bandgap of 1.89 eV, somewhat larger than that of Al0.3Ga0.7As, and the In0.48Ga0.52P/GaAs valence band offset (ΔEv) is about 0.3 eV, larger than that of the Al0.3Ga0.52As/GaAs heterojunction. Furthermore, InGaP exhibits a lower concentration of deep levels than AlGaAs, and InGaP does not oxidize as readily as AlGaAs. InGaP/GaAs QWs have been previously reported by Razeghi et al., who used metalorganic chemical vapor deposition to grow wells as narrow as 15Å(1) We report here the growth of InGaP/GaAs QWs by gas-source molecular beam epitaxy (GSMBE). Single QWs as narrow as 6Å and multiple QW superlattices with abrupt interfaces are described.