分子束外延生长InGaP/GaAs的高质量量子阱

M. Hafich, J. Quigley, R. E. Owens, G. Y. Robinson, Du Li, N. Ōtsuka
{"title":"分子束外延生长InGaP/GaAs的高质量量子阱","authors":"M. Hafich, J. Quigley, R. E. Owens, G. Y. Robinson, Du Li, N. Ōtsuka","doi":"10.1063/1.101035","DOIUrl":null,"url":null,"abstract":"The materials system AlGaAs/GaAs has been used extensively for synthesis of quantum well (QW) optoelectronic devices. The III-V alloy InGaP provides an alternative to AlGaAs for confinement of GaAs QWs. At the composition for lattice matching to GaAs, In0.48Ga0.52P exhibits a room temperature bandgap of 1.89 eV, somewhat larger than that of Al0.3Ga0.7As, and the In0.48Ga0.52P/GaAs valence band offset (ΔEv) is about 0.3 eV, larger than that of the Al0.3Ga0.52As/GaAs heterojunction. Furthermore, InGaP exhibits a lower concentration of deep levels than AlGaAs, and InGaP does not oxidize as readily as AlGaAs. InGaP/GaAs QWs have been previously reported by Razeghi et al., who used metalorganic chemical vapor deposition to grow wells as narrow as 15Å(1) We report here the growth of InGaP/GaAs QWs by gas-source molecular beam epitaxy (GSMBE). Single QWs as narrow as 6Å and multiple QW superlattices with abrupt interfaces are described.","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"High Quality Quantum Wells of InGaP/GaAs Grown by Molecular Beam Epitaxy\",\"authors\":\"M. Hafich, J. Quigley, R. E. Owens, G. Y. Robinson, Du Li, N. Ōtsuka\",\"doi\":\"10.1063/1.101035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The materials system AlGaAs/GaAs has been used extensively for synthesis of quantum well (QW) optoelectronic devices. The III-V alloy InGaP provides an alternative to AlGaAs for confinement of GaAs QWs. At the composition for lattice matching to GaAs, In0.48Ga0.52P exhibits a room temperature bandgap of 1.89 eV, somewhat larger than that of Al0.3Ga0.7As, and the In0.48Ga0.52P/GaAs valence band offset (ΔEv) is about 0.3 eV, larger than that of the Al0.3Ga0.52As/GaAs heterojunction. Furthermore, InGaP exhibits a lower concentration of deep levels than AlGaAs, and InGaP does not oxidize as readily as AlGaAs. InGaP/GaAs QWs have been previously reported by Razeghi et al., who used metalorganic chemical vapor deposition to grow wells as narrow as 15Å(1) We report here the growth of InGaP/GaAs QWs by gas-source molecular beam epitaxy (GSMBE). Single QWs as narrow as 6Å and multiple QW superlattices with abrupt interfaces are described.\",\"PeriodicalId\":205579,\"journal\":{\"name\":\"Quantum Wells for Optics and Optoelectronics\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Wells for Optics and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.101035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.101035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

AlGaAs/GaAs材料体系已广泛应用于量子阱(QW)光电器件的合成。III-V合金InGaP为限制GaAs量子阱提供了一种替代AlGaAs的方法。在与GaAs晶格匹配的组成中,in0.48 ga0.2p的室温带隙为1.89 eV,略大于Al0.3Ga0.7As, in0.48 ga0.2p /GaAs的价带偏移(ΔEv)约为0.3 eV,大于Al0.3Ga0.52As/GaAs异质结的价带偏移。此外,InGaP表现出比AlGaAs更低的深层浓度,并且InGaP不像AlGaAs那样容易氧化。Razeghi等人之前已经报道过InGaP/GaAs量子阱,他们使用金属有机化学气相沉积技术生长出了窄至15Å的井。(1)我们在这里报道了用气源分子束外延(GSMBE)生长InGaP/GaAs量子阱。描述了窄至6Å的单个量子阱和具有突然界面的多个量子阱超晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Quality Quantum Wells of InGaP/GaAs Grown by Molecular Beam Epitaxy
The materials system AlGaAs/GaAs has been used extensively for synthesis of quantum well (QW) optoelectronic devices. The III-V alloy InGaP provides an alternative to AlGaAs for confinement of GaAs QWs. At the composition for lattice matching to GaAs, In0.48Ga0.52P exhibits a room temperature bandgap of 1.89 eV, somewhat larger than that of Al0.3Ga0.7As, and the In0.48Ga0.52P/GaAs valence band offset (ΔEv) is about 0.3 eV, larger than that of the Al0.3Ga0.52As/GaAs heterojunction. Furthermore, InGaP exhibits a lower concentration of deep levels than AlGaAs, and InGaP does not oxidize as readily as AlGaAs. InGaP/GaAs QWs have been previously reported by Razeghi et al., who used metalorganic chemical vapor deposition to grow wells as narrow as 15Å(1) We report here the growth of InGaP/GaAs QWs by gas-source molecular beam epitaxy (GSMBE). Single QWs as narrow as 6Å and multiple QW superlattices with abrupt interfaces are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Optical Properties of Quantum-Confined CdSe Microcrystallites Inducing normally forbidden transitions within the conduction band of GaAs quantum wells Monte Carlo Simulation of Femtosecond Spectroscopy in Semiconductor Heterostructures Temperature-Dependent Characteristics of GaAs/AlGaAs Multiple Quantum Well Optical Modulators Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1