使用神经存储元件的顺序电路的神经网络仿真设计方法

N. Dagdee, N.S. Chaudhari
{"title":"使用神经存储元件的顺序电路的神经网络仿真设计方法","authors":"N. Dagdee, N.S. Chaudhari","doi":"10.1109/SICE.1999.788718","DOIUrl":null,"url":null,"abstract":"Multilayer feedforward networks have been found suitable for applications in which they need to learn binary-to-binary mappings. We propose a design methodology to simulate sequential functions using neural networks. The combinational function is implemented by a perceptron network with single hidden layer trained using an ETL algorithm. Design of neural storage elements similar to flip-flops is also proposed, which are used as memory elements to store the internal states. Use of the ETL algorithm guarantees convergence for any binary-to-binary mapping, and generally leads to faster convergence than the backpropagation algorithm. The resulting network only consists of neural elements, with all the neurons having integer valued weights and activation thresholds making the network more suitable for hardware implementation using digital VLSI technology.","PeriodicalId":103164,"journal":{"name":"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design methodology for neural network simulation of sequential circuits using neural storage elements\",\"authors\":\"N. Dagdee, N.S. Chaudhari\",\"doi\":\"10.1109/SICE.1999.788718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilayer feedforward networks have been found suitable for applications in which they need to learn binary-to-binary mappings. We propose a design methodology to simulate sequential functions using neural networks. The combinational function is implemented by a perceptron network with single hidden layer trained using an ETL algorithm. Design of neural storage elements similar to flip-flops is also proposed, which are used as memory elements to store the internal states. Use of the ETL algorithm guarantees convergence for any binary-to-binary mapping, and generally leads to faster convergence than the backpropagation algorithm. The resulting network only consists of neural elements, with all the neurons having integer valued weights and activation thresholds making the network more suitable for hardware implementation using digital VLSI technology.\",\"PeriodicalId\":103164,\"journal\":{\"name\":\"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.1999.788718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1999.788718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多层前馈网络已经被发现适合于需要学习二进制到二进制映射的应用。我们提出了一种利用神经网络模拟序列函数的设计方法。组合函数由一个感知器网络实现,该感知器网络使用ETL算法训练单个隐藏层。提出了一种类似人字拖的神经存储元件的设计,将其作为存储元件来存储内部状态。使用ETL算法保证了任何二进制到二进制映射的收敛性,并且通常比反向传播算法更快地收敛。所得到的网络仅由神经元素组成,所有神经元都具有整数值权值和激活阈值,使网络更适合使用数字VLSI技术进行硬件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design methodology for neural network simulation of sequential circuits using neural storage elements
Multilayer feedforward networks have been found suitable for applications in which they need to learn binary-to-binary mappings. We propose a design methodology to simulate sequential functions using neural networks. The combinational function is implemented by a perceptron network with single hidden layer trained using an ETL algorithm. Design of neural storage elements similar to flip-flops is also proposed, which are used as memory elements to store the internal states. Use of the ETL algorithm guarantees convergence for any binary-to-binary mapping, and generally leads to faster convergence than the backpropagation algorithm. The resulting network only consists of neural elements, with all the neurons having integer valued weights and activation thresholds making the network more suitable for hardware implementation using digital VLSI technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model reference feedback and PID control for interval plants A compiler design for IEC 1131-3 standard languages of programmable logic controllers Mass measurement based on the law of conservation of momentum Generation of robot control circuit using EHW approach Theoretical study and experiment on frequency characteristics of a probe microphone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1