{"title":"用于振动陀螺仪的高阶带通σ δ接口","authors":"Yufeng Dong, M. Kraft, W. Redman-White","doi":"10.1109/ICSENS.2005.1597891","DOIUrl":null,"url":null,"abstract":"Previous work on sigma delta (SigmaDelta) interfaces for micromachined vibratory gyroscopes were based on lowpass SigmaDelta modulators. However, for a lowpass SigmaDelta interface the signal band is a relatively small fraction of the sampling frequency fs , which increases the noise aliasing and result in a relatively high noise floor in the signal band. Due to the characteristic of narrowband amplitude-modulated signals of vibratory rate gyroscopes, a bandpass SigmaDelta interface is more attractive. A bandpass SigmaDelta interface is superior as it is relatively immune to 1/f noise compared to a lowpass SigmaDelta interface. To achieve a similar noise floor with a given oversampling ratio (OSR), the sampling frequency of a bandpass SigmaDelta interface can be much lower than that of a lowpass SigmaDelta interface. Furthermore, some high order SigmaDelta loop topologies have favorable noise shaping characteristics for electronic noise originating from the pickoff circuit and signal anti-aliasing. Therefore, the requirements for the electronic circuits can be considerably relaxed","PeriodicalId":119985,"journal":{"name":"IEEE Sensors, 2005.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"High Order Bandpass Sigma Delta Interface for Vibratory Gyroscopes\",\"authors\":\"Yufeng Dong, M. Kraft, W. Redman-White\",\"doi\":\"10.1109/ICSENS.2005.1597891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work on sigma delta (SigmaDelta) interfaces for micromachined vibratory gyroscopes were based on lowpass SigmaDelta modulators. However, for a lowpass SigmaDelta interface the signal band is a relatively small fraction of the sampling frequency fs , which increases the noise aliasing and result in a relatively high noise floor in the signal band. Due to the characteristic of narrowband amplitude-modulated signals of vibratory rate gyroscopes, a bandpass SigmaDelta interface is more attractive. A bandpass SigmaDelta interface is superior as it is relatively immune to 1/f noise compared to a lowpass SigmaDelta interface. To achieve a similar noise floor with a given oversampling ratio (OSR), the sampling frequency of a bandpass SigmaDelta interface can be much lower than that of a lowpass SigmaDelta interface. Furthermore, some high order SigmaDelta loop topologies have favorable noise shaping characteristics for electronic noise originating from the pickoff circuit and signal anti-aliasing. Therefore, the requirements for the electronic circuits can be considerably relaxed\",\"PeriodicalId\":119985,\"journal\":{\"name\":\"IEEE Sensors, 2005.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2005.1597891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2005.1597891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Order Bandpass Sigma Delta Interface for Vibratory Gyroscopes
Previous work on sigma delta (SigmaDelta) interfaces for micromachined vibratory gyroscopes were based on lowpass SigmaDelta modulators. However, for a lowpass SigmaDelta interface the signal band is a relatively small fraction of the sampling frequency fs , which increases the noise aliasing and result in a relatively high noise floor in the signal band. Due to the characteristic of narrowband amplitude-modulated signals of vibratory rate gyroscopes, a bandpass SigmaDelta interface is more attractive. A bandpass SigmaDelta interface is superior as it is relatively immune to 1/f noise compared to a lowpass SigmaDelta interface. To achieve a similar noise floor with a given oversampling ratio (OSR), the sampling frequency of a bandpass SigmaDelta interface can be much lower than that of a lowpass SigmaDelta interface. Furthermore, some high order SigmaDelta loop topologies have favorable noise shaping characteristics for electronic noise originating from the pickoff circuit and signal anti-aliasing. Therefore, the requirements for the electronic circuits can be considerably relaxed