自稳定迭代求解器

Piyush Sao, R. Vuduc
{"title":"自稳定迭代求解器","authors":"Piyush Sao, R. Vuduc","doi":"10.1145/2530268.2530272","DOIUrl":null,"url":null,"abstract":"We show how to use the idea of self-stabilization, which originates in the context of distributed control, to make fault-tolerant iterative solvers. Generally, a self-stabilizing system is one that, starting from an arbitrary state (valid or invalid), reaches a valid state within a finite number of steps. This property imbues the system with a natural means of tolerating transient faults. We give two proof-of-concept examples of self-stabilizing iterative linear solvers: one for steepest descent (SD) and one for conjugate gradients (CG). Our self-stabilized versions of SD and CG require small amounts of fault-detection, e.g., we may check only for NaNs and infinities. We test our approach experimentally by analyzing its convergence and overhead for different types and rates of faults. Beyond the specific findings of this paper, we believe self-stabilization has promise to become a useful tool for constructing resilient solvers more generally.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Self-stabilizing iterative solvers\",\"authors\":\"Piyush Sao, R. Vuduc\",\"doi\":\"10.1145/2530268.2530272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to use the idea of self-stabilization, which originates in the context of distributed control, to make fault-tolerant iterative solvers. Generally, a self-stabilizing system is one that, starting from an arbitrary state (valid or invalid), reaches a valid state within a finite number of steps. This property imbues the system with a natural means of tolerating transient faults. We give two proof-of-concept examples of self-stabilizing iterative linear solvers: one for steepest descent (SD) and one for conjugate gradients (CG). Our self-stabilized versions of SD and CG require small amounts of fault-detection, e.g., we may check only for NaNs and infinities. We test our approach experimentally by analyzing its convergence and overhead for different types and rates of faults. Beyond the specific findings of this paper, we believe self-stabilization has promise to become a useful tool for constructing resilient solvers more generally.\",\"PeriodicalId\":259517,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Scala\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Scala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2530268.2530272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2530268.2530272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

我们展示了如何使用源自分布式控制的自稳定思想来制作容错迭代求解器。一般来说,自稳定系统是从任意状态(有效或无效)开始,在有限的步骤内达到有效状态的系统。这一特性赋予了系统一种容忍暂态故障的自然手段。我们给出了两个自稳定迭代线性解的概念证明例子:一个用于最陡下降(SD),一个用于共轭梯度(CG)。我们的SD和CG的自稳定版本需要少量的故障检测,例如,我们可能只检查nan和无穷大。我们通过实验测试了我们的方法,分析了它的收敛性和开销对不同类型和频率的故障。除了本文的具体发现之外,我们相信自稳定有望成为更普遍地构建弹性解的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-stabilizing iterative solvers
We show how to use the idea of self-stabilization, which originates in the context of distributed control, to make fault-tolerant iterative solvers. Generally, a self-stabilizing system is one that, starting from an arbitrary state (valid or invalid), reaches a valid state within a finite number of steps. This property imbues the system with a natural means of tolerating transient faults. We give two proof-of-concept examples of self-stabilizing iterative linear solvers: one for steepest descent (SD) and one for conjugate gradients (CG). Our self-stabilized versions of SD and CG require small amounts of fault-detection, e.g., we may check only for NaNs and infinities. We test our approach experimentally by analyzing its convergence and overhead for different types and rates of faults. Beyond the specific findings of this paper, we believe self-stabilization has promise to become a useful tool for constructing resilient solvers more generally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1