基于时间分辨扫描非线性介电显微镜的local - dts高分辨率SiO2/SiC界面缺陷映射

Y. Yamagishi, Yasuo Cho
{"title":"基于时间分辨扫描非线性介电显微镜的local - dts高分辨率SiO2/SiC界面缺陷映射","authors":"Y. Yamagishi, Yasuo Cho","doi":"10.1109/IPFA47161.2019.8984905","DOIUrl":null,"url":null,"abstract":"High resolution observation of density of interface states (Hit) at SiO2/4H-SiC interfaces was performed by local deep level transient spectroscopy based on time-resolved scanning nonlinear dielectric microscopy (tr-SNDM). The sizes of the non-uniform contrasts observed in the map of Dit were in the order of several tens of nanometers, which are smaller than the value reported in the previous study (>100 nm). The simulation of the tr-SNDM measurement suggested that the spatial resolution of tr-SNDM is down to the tip radius of the cantilever used for the measurement and can be smaller than the lateral spread of the depletion layer width.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Resolution Mapping of Defects at SiO2/SiC Interfaces by Local-DLTS Based on Time-Resolved Scanning Nonlinear Dielectric Microscopy\",\"authors\":\"Y. Yamagishi, Yasuo Cho\",\"doi\":\"10.1109/IPFA47161.2019.8984905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High resolution observation of density of interface states (Hit) at SiO2/4H-SiC interfaces was performed by local deep level transient spectroscopy based on time-resolved scanning nonlinear dielectric microscopy (tr-SNDM). The sizes of the non-uniform contrasts observed in the map of Dit were in the order of several tens of nanometers, which are smaller than the value reported in the previous study (>100 nm). The simulation of the tr-SNDM measurement suggested that the spatial resolution of tr-SNDM is down to the tip radius of the cantilever used for the measurement and can be smaller than the lateral spread of the depletion layer width.\",\"PeriodicalId\":169775,\"journal\":{\"name\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA47161.2019.8984905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用基于时间分辨扫描非线性介电显微镜(tr-SNDM)的局部深能级瞬态光谱对SiO2/4H-SiC界面态密度(Hit)进行了高分辨率观测。在Dit图中观察到的非均匀对比大小在几十纳米量级,比以往研究报道的值(>100 nm)要小。对tr-SNDM测量的模拟表明,tr-SNDM的空间分辨率可以降低到用于测量的悬臂梁的尖端半径,并且可以小于耗尽层宽度的横向扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Resolution Mapping of Defects at SiO2/SiC Interfaces by Local-DLTS Based on Time-Resolved Scanning Nonlinear Dielectric Microscopy
High resolution observation of density of interface states (Hit) at SiO2/4H-SiC interfaces was performed by local deep level transient spectroscopy based on time-resolved scanning nonlinear dielectric microscopy (tr-SNDM). The sizes of the non-uniform contrasts observed in the map of Dit were in the order of several tens of nanometers, which are smaller than the value reported in the previous study (>100 nm). The simulation of the tr-SNDM measurement suggested that the spatial resolution of tr-SNDM is down to the tip radius of the cantilever used for the measurement and can be smaller than the lateral spread of the depletion layer width.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How To Determine Fluorine Contamination Level On A Normal Al Bondpad? Increased Fault Isolation Efficiency by Using Scan Cell Visualizer for Scan Chain Failures The Solutions of Bit Line Failure Analysis: Low kV E-Beam, EBAC and LVI Correlation Analysis and Characterization of Micromorphology and Optoelectronic Properties of SiO2/SiC in Pressure Sensor A Robust Dual Directional SCR without Current Saturation Effect for ESD Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1