{"title":"双重图案技术的模板-掩模设计方法","authors":"Chin-Hsiung Hsu, Yao-Wen Chang, S. Nassif","doi":"10.1109/ICCAD.2010.5654288","DOIUrl":null,"url":null,"abstract":"Double patterning technology (DPT) has recently gained much attention and is viewed as the most promising solution for the sub-32-nm node process. DPT decomposes a layout into two masks and applies double exposure patterning to increase the pitch size and thus printability. This paper proposes the first mask-sharing methodology for DPT, which can share masks among different designs, to reduce the number of costly masks for double patterning. The design methodology consists of two tasks: template-mask design and template-mask-aware routing. A graph matching-based algorithm is developed to design a flexible template mask that tries to accommodate as many design patterns as possible. We also present a template-mask-aware routing (TMR) algorithm, focusing on DPT-related issues to generate routing solutions that satisfy the constraints induced from double patterning and template masks. Experimental results show that our designed template mask is mask-saving, and our TMR can achieve conflict-free routing with 100% routability and save at least two masks for each circuit with reasonable wirelength and runtime overheads.","PeriodicalId":344703,"journal":{"name":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Template-mask design methodology for double patterning technology\",\"authors\":\"Chin-Hsiung Hsu, Yao-Wen Chang, S. Nassif\",\"doi\":\"10.1109/ICCAD.2010.5654288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Double patterning technology (DPT) has recently gained much attention and is viewed as the most promising solution for the sub-32-nm node process. DPT decomposes a layout into two masks and applies double exposure patterning to increase the pitch size and thus printability. This paper proposes the first mask-sharing methodology for DPT, which can share masks among different designs, to reduce the number of costly masks for double patterning. The design methodology consists of two tasks: template-mask design and template-mask-aware routing. A graph matching-based algorithm is developed to design a flexible template mask that tries to accommodate as many design patterns as possible. We also present a template-mask-aware routing (TMR) algorithm, focusing on DPT-related issues to generate routing solutions that satisfy the constraints induced from double patterning and template masks. Experimental results show that our designed template mask is mask-saving, and our TMR can achieve conflict-free routing with 100% routability and save at least two masks for each circuit with reasonable wirelength and runtime overheads.\",\"PeriodicalId\":344703,\"journal\":{\"name\":\"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2010.5654288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2010.5654288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Template-mask design methodology for double patterning technology
Double patterning technology (DPT) has recently gained much attention and is viewed as the most promising solution for the sub-32-nm node process. DPT decomposes a layout into two masks and applies double exposure patterning to increase the pitch size and thus printability. This paper proposes the first mask-sharing methodology for DPT, which can share masks among different designs, to reduce the number of costly masks for double patterning. The design methodology consists of two tasks: template-mask design and template-mask-aware routing. A graph matching-based algorithm is developed to design a flexible template mask that tries to accommodate as many design patterns as possible. We also present a template-mask-aware routing (TMR) algorithm, focusing on DPT-related issues to generate routing solutions that satisfy the constraints induced from double patterning and template masks. Experimental results show that our designed template mask is mask-saving, and our TMR can achieve conflict-free routing with 100% routability and save at least two masks for each circuit with reasonable wirelength and runtime overheads.