计算云中的高效服务器利用率

Jörg Lenhardt, W. Schiffmann, Patrick Eitschberger, J. Keller
{"title":"计算云中的高效服务器利用率","authors":"Jörg Lenhardt, W. Schiffmann, Patrick Eitschberger, J. Keller","doi":"10.1109/E3S.2013.6705859","DOIUrl":null,"url":null,"abstract":"High performance servers of data centers for cloud computing consume immense amounts of energy even though they are usually underutilized because they provide huge computing capabilities. In times when not all of those computing capabilities are needed the task to be solved is how to distribute the load in a power-efficient manner. The research question is: How should a requested compute load be mapped to the available physical servers so that it is executed with the minimum power consumption? The requested load is measured in operations per seconds and changes over time. In this work, we assume that it is divisible which means that portions of the requested load can be freely assigned to different servers. This assumption is plausible because the load of a typical compute cloud consists of many virtual machines (VM). Our investigations are based on the SPECpower benchmark, retrieved Jan 9, 2013. SPECpower relies on Server Side Java (SSJ) for measuring power consumption of servers at different load levels running Java applications [7].","PeriodicalId":231837,"journal":{"name":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","volume":"331 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-efficient server utilization in compute clouds\",\"authors\":\"Jörg Lenhardt, W. Schiffmann, Patrick Eitschberger, J. Keller\",\"doi\":\"10.1109/E3S.2013.6705859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High performance servers of data centers for cloud computing consume immense amounts of energy even though they are usually underutilized because they provide huge computing capabilities. In times when not all of those computing capabilities are needed the task to be solved is how to distribute the load in a power-efficient manner. The research question is: How should a requested compute load be mapped to the available physical servers so that it is executed with the minimum power consumption? The requested load is measured in operations per seconds and changes over time. In this work, we assume that it is divisible which means that portions of the requested load can be freely assigned to different servers. This assumption is plausible because the load of a typical compute cloud consists of many virtual machines (VM). Our investigations are based on the SPECpower benchmark, retrieved Jan 9, 2013. SPECpower relies on Server Side Java (SSJ) for measuring power consumption of servers at different load levels running Java applications [7].\",\"PeriodicalId\":231837,\"journal\":{\"name\":\"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)\",\"volume\":\"331 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/E3S.2013.6705859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E3S.2013.6705859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于云计算的数据中心的高性能服务器消耗了大量的能源,尽管它们通常没有得到充分利用,因为它们提供了巨大的计算能力。在不需要所有这些计算能力的情况下,要解决的任务是如何以节能的方式分配负载。研究的问题是:请求的计算负载应该如何映射到可用的物理服务器,以便以最小的功耗执行它?所请求的负载以每秒操作数为单位进行测量,并随时间变化。在这项工作中,我们假设它是可分割的,这意味着所请求的负载的一部分可以自由地分配给不同的服务器。这个假设是合理的,因为典型计算云的负载由许多虚拟机(VM)组成。我们的调查基于2013年1月9日检索的SPECpower基准。SPECpower依靠服务器端Java (SSJ)来测量运行Java应用程序的服务器在不同负载水平下的功耗[7]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power-efficient server utilization in compute clouds
High performance servers of data centers for cloud computing consume immense amounts of energy even though they are usually underutilized because they provide huge computing capabilities. In times when not all of those computing capabilities are needed the task to be solved is how to distribute the load in a power-efficient manner. The research question is: How should a requested compute load be mapped to the available physical servers so that it is executed with the minimum power consumption? The requested load is measured in operations per seconds and changes over time. In this work, we assume that it is divisible which means that portions of the requested load can be freely assigned to different servers. This assumption is plausible because the load of a typical compute cloud consists of many virtual machines (VM). Our investigations are based on the SPECpower benchmark, retrieved Jan 9, 2013. SPECpower relies on Server Side Java (SSJ) for measuring power consumption of servers at different load levels running Java applications [7].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs Ultra-Low power neuromorphic computing with spin-torque devices Power-efficient server utilization in compute clouds Energy transparency from hardware to software Prospects for high-aspect-ratio FinFETs in low-power logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1