Yi Zou, S. Chakravarty, Chi-Jui Chung, Ray T. Chen
{"title":"微型中红外热光开关,基于光子晶体波导的蓝宝石上硅马赫-曾德干涉仪","authors":"Yi Zou, S. Chakravarty, Chi-Jui Chung, Ray T. Chen","doi":"10.1117/12.2214440","DOIUrl":null,"url":null,"abstract":"Ultracompact thermooptically tuned photonic crystal waveguide (PCW) based Mach–Zehnder interferometers (MZIs) working in silicon-on-sapphire in mid-infrared regime have been proposed and demonstrated. We designed and fabricated a PCW based silicon thermo-optic (TO) switch operating at 3.43 μm. Both steady-state and transient thermal analyses were performed to evaluate the thermal performance of the TO MZIs. The required π phase shift between the two arms of the MZI has been successfully achieved within an 80 μm interaction distance. The maximum modulation depth of 74% was demonstrated for switching power of 170 mW.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach–Zehnder interferometers\",\"authors\":\"Yi Zou, S. Chakravarty, Chi-Jui Chung, Ray T. Chen\",\"doi\":\"10.1117/12.2214440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultracompact thermooptically tuned photonic crystal waveguide (PCW) based Mach–Zehnder interferometers (MZIs) working in silicon-on-sapphire in mid-infrared regime have been proposed and demonstrated. We designed and fabricated a PCW based silicon thermo-optic (TO) switch operating at 3.43 μm. Both steady-state and transient thermal analyses were performed to evaluate the thermal performance of the TO MZIs. The required π phase shift between the two arms of the MZI has been successfully achieved within an 80 μm interaction distance. The maximum modulation depth of 74% was demonstrated for switching power of 170 mW.\",\"PeriodicalId\":122702,\"journal\":{\"name\":\"SPIE OPTO\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE OPTO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2214440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2214440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach–Zehnder interferometers
Ultracompact thermooptically tuned photonic crystal waveguide (PCW) based Mach–Zehnder interferometers (MZIs) working in silicon-on-sapphire in mid-infrared regime have been proposed and demonstrated. We designed and fabricated a PCW based silicon thermo-optic (TO) switch operating at 3.43 μm. Both steady-state and transient thermal analyses were performed to evaluate the thermal performance of the TO MZIs. The required π phase shift between the two arms of the MZI has been successfully achieved within an 80 μm interaction distance. The maximum modulation depth of 74% was demonstrated for switching power of 170 mW.