直插式引脚翅片散热器LED阵列系统的热瞬态分析

Fengze Hou, Daoguo Yang, G.Q. Zhang, Yang Hai, Dongjing Liu, Lei Liu
{"title":"直插式引脚翅片散热器LED阵列系统的热瞬态分析","authors":"Fengze Hou, Daoguo Yang, G.Q. Zhang, Yang Hai, Dongjing Liu, Lei Liu","doi":"10.1109/ESIME.2011.5765844","DOIUrl":null,"url":null,"abstract":"In this paper, a 3 W high power LED array system with an in-line pin fin heat sink is designed, fabricated, and investigated for thermal transient analysis. Preliminary finite element simulation is conducted by ANSYS, and LED array average junction temperature is about 40.9°C. In the experiment, electrical test method is used to evaluate the heat dissipation effect of the LED array system. Experiment results show that the system works well. The cumulative thermal resistance of the system is about 6.7K/W, and corresponding LED array average junction temperature is about 40.5°C. It is found that the simulation result is consistent with the experimental result. The error is about 1%. It is also found that, in order to get accurate thermal resistance of every kind of material in the heat flow path, we should analyze the curves of cumulative and differential structure function simultaneously.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Thermal transient analysis of LED array system with in-line pin fin heat sink\",\"authors\":\"Fengze Hou, Daoguo Yang, G.Q. Zhang, Yang Hai, Dongjing Liu, Lei Liu\",\"doi\":\"10.1109/ESIME.2011.5765844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a 3 W high power LED array system with an in-line pin fin heat sink is designed, fabricated, and investigated for thermal transient analysis. Preliminary finite element simulation is conducted by ANSYS, and LED array average junction temperature is about 40.9°C. In the experiment, electrical test method is used to evaluate the heat dissipation effect of the LED array system. Experiment results show that the system works well. The cumulative thermal resistance of the system is about 6.7K/W, and corresponding LED array average junction temperature is about 40.5°C. It is found that the simulation result is consistent with the experimental result. The error is about 1%. It is also found that, in order to get accurate thermal resistance of every kind of material in the heat flow path, we should analyze the curves of cumulative and differential structure function simultaneously.\",\"PeriodicalId\":115489,\"journal\":{\"name\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2011.5765844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文设计、制作了一种具有直插式引脚翅片散热器的3w大功率LED阵列系统,并对其进行了热瞬态分析。利用ANSYS进行初步有限元仿真,LED阵列平均结温约为40.9℃。在实验中,采用电气测试的方法对LED阵列系统的散热效果进行了评价。实验结果表明,该系统运行良好。该系统的累积热阻约为6.7K/W,对应的LED阵列平均结温约为40.5℃。仿真结果与实验结果吻合较好。误差约为1%。研究还发现,为了准确得到各种材料在热流路径上的热阻,需要同时分析累积结构函数和微分结构函数的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal transient analysis of LED array system with in-line pin fin heat sink
In this paper, a 3 W high power LED array system with an in-line pin fin heat sink is designed, fabricated, and investigated for thermal transient analysis. Preliminary finite element simulation is conducted by ANSYS, and LED array average junction temperature is about 40.9°C. In the experiment, electrical test method is used to evaluate the heat dissipation effect of the LED array system. Experiment results show that the system works well. The cumulative thermal resistance of the system is about 6.7K/W, and corresponding LED array average junction temperature is about 40.5°C. It is found that the simulation result is consistent with the experimental result. The error is about 1%. It is also found that, in order to get accurate thermal resistance of every kind of material in the heat flow path, we should analyze the curves of cumulative and differential structure function simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of metaheuristic algorithms for simulation based OPF computation Challenges of power electronic packaging and modeling Impact of VDMOS source metallization ageing in 3D FEM wire lift off modeling Assessment of thermo mechanical properties of crosslinked epoxy mesoscale approach — Preliminary results FEA study on electrical interconnects for a power QFN package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1