铟掺杂改善IGBT闭锁性能

Z. Shen, V. Parthasarathy, T. Chow
{"title":"铟掺杂改善IGBT闭锁性能","authors":"Z. Shen, V. Parthasarathy, T. Chow","doi":"10.1109/DRC.1995.496293","DOIUrl":null,"url":null,"abstract":"Summary form only given. The Insulated Gate Bipolar Transistor (IGBT) has become the dominant power MOS-gated switching device of choice for medium power electronics applications. One of the inherent weaknesses of the IGBT is the presence of a parasitic four-layer npnp thyristor structure that must be suppressed from turning on to retain gate-controlled operation. Several techniques, notably the cell design and counterdoping of the MOS channel, have been proposed to improving the latching suppression, particularly at elevated temperatures. In this paper, a novel latchup improvement technique, which adds indium in the p body region to decrease the sheet resistance of that region under the n/sup +/ emitter without a concomittant increase of threshold voltage, is proposed and demonstrated experimentally.","PeriodicalId":326645,"journal":{"name":"1995 53rd Annual Device Research Conference Digest","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of IGBT latching performance by indium doping\",\"authors\":\"Z. Shen, V. Parthasarathy, T. Chow\",\"doi\":\"10.1109/DRC.1995.496293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The Insulated Gate Bipolar Transistor (IGBT) has become the dominant power MOS-gated switching device of choice for medium power electronics applications. One of the inherent weaknesses of the IGBT is the presence of a parasitic four-layer npnp thyristor structure that must be suppressed from turning on to retain gate-controlled operation. Several techniques, notably the cell design and counterdoping of the MOS channel, have been proposed to improving the latching suppression, particularly at elevated temperatures. In this paper, a novel latchup improvement technique, which adds indium in the p body region to decrease the sheet resistance of that region under the n/sup +/ emitter without a concomittant increase of threshold voltage, is proposed and demonstrated experimentally.\",\"PeriodicalId\":326645,\"journal\":{\"name\":\"1995 53rd Annual Device Research Conference Digest\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 53rd Annual Device Research Conference Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.1995.496293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 53rd Annual Device Research Conference Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.1995.496293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

只提供摘要形式。绝缘栅双极晶体管(IGBT)已成为中功率电子应用中首选的功率mos门控开关器件。IGBT的固有弱点之一是存在寄生的四层npnp晶闸管结构,必须抑制其导通以保持门控操作。已经提出了几种技术,特别是电池设计和MOS通道的反掺杂,以改善锁存抑制,特别是在高温下。本文提出了一种新的闭锁改进技术,在不增加阈值电压的情况下,在p体区域添加铟以降低该区域在n/sup +/发射极下的片阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of IGBT latching performance by indium doping
Summary form only given. The Insulated Gate Bipolar Transistor (IGBT) has become the dominant power MOS-gated switching device of choice for medium power electronics applications. One of the inherent weaknesses of the IGBT is the presence of a parasitic four-layer npnp thyristor structure that must be suppressed from turning on to retain gate-controlled operation. Several techniques, notably the cell design and counterdoping of the MOS channel, have been proposed to improving the latching suppression, particularly at elevated temperatures. In this paper, a novel latchup improvement technique, which adds indium in the p body region to decrease the sheet resistance of that region under the n/sup +/ emitter without a concomittant increase of threshold voltage, is proposed and demonstrated experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intrinsic oscillations in resonant tunneling structures New interpretation of threshold voltage in polysilicon TFTs: a theoretical and experimental study New generation of organic-based thin-film transistors Monolithic integration of a 94 GHz AlGaAs/GaAs 2DEG mixer on quartz substrate by epitaxial lift-off A 140 GHz f/sub max/ InAlAs/InGaAs pulse-doped InGaAlAs quaternary collector HBT with a 20 V BVceo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1