{"title":"非贵金属纳米片的等离子体效应","authors":"M. Choi, M. Dutta, M. Stroscio","doi":"10.1109/IWCE.2015.7301944","DOIUrl":null,"url":null,"abstract":"Plasmonics has attracted many researchers by its enourmous possibilities. However, the plasmonic materials of interest are mostly precious metals such as gold and silver. In this work, plasmonic properties of various sized non-precious metallic nanodisks are studied. Our calculations show that the non-precious metals examined here exhibit the same red-shifting pattern as the diameter increases. While the Ag nanodisk shows the highest scattering cross section (SCS) in the ultraviolet range, the SCS patterns of Al, Ni, and Cu nanodisks are high throughout the visible region. The amplitudes of the normalized SCS of the Al, Ni, and Cu nanodisks are comparable with the Ag nanodisk in the visible region. These results suggest the cost effective replacement of precious metals in application of plasmonics-based optics.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonics effects of non-precious metallic nanodisks\",\"authors\":\"M. Choi, M. Dutta, M. Stroscio\",\"doi\":\"10.1109/IWCE.2015.7301944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmonics has attracted many researchers by its enourmous possibilities. However, the plasmonic materials of interest are mostly precious metals such as gold and silver. In this work, plasmonic properties of various sized non-precious metallic nanodisks are studied. Our calculations show that the non-precious metals examined here exhibit the same red-shifting pattern as the diameter increases. While the Ag nanodisk shows the highest scattering cross section (SCS) in the ultraviolet range, the SCS patterns of Al, Ni, and Cu nanodisks are high throughout the visible region. The amplitudes of the normalized SCS of the Al, Ni, and Cu nanodisks are comparable with the Ag nanodisk in the visible region. These results suggest the cost effective replacement of precious metals in application of plasmonics-based optics.\",\"PeriodicalId\":165023,\"journal\":{\"name\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2015.7301944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasmonics effects of non-precious metallic nanodisks
Plasmonics has attracted many researchers by its enourmous possibilities. However, the plasmonic materials of interest are mostly precious metals such as gold and silver. In this work, plasmonic properties of various sized non-precious metallic nanodisks are studied. Our calculations show that the non-precious metals examined here exhibit the same red-shifting pattern as the diameter increases. While the Ag nanodisk shows the highest scattering cross section (SCS) in the ultraviolet range, the SCS patterns of Al, Ni, and Cu nanodisks are high throughout the visible region. The amplitudes of the normalized SCS of the Al, Ni, and Cu nanodisks are comparable with the Ag nanodisk in the visible region. These results suggest the cost effective replacement of precious metals in application of plasmonics-based optics.