Gregory M. Johnson, Thomas Rodgers, H. Stegmann, F. Hitzel
{"title":"导电AFM在SEM为7纳米及以上:AM:先进的计量","authors":"Gregory M. Johnson, Thomas Rodgers, H. Stegmann, F. Hitzel","doi":"10.1109/asmc54647.2022.9792505","DOIUrl":null,"url":null,"abstract":"Measuring surface conduction points is a well-established analytical technique in SRAM failure analysis. A novel workflow and system have been developed that makes use of an Atomic Force Microscope (AFM) inside a Scanning Electron Microscope (SEM) and is capable of using standard laser deflection based probe tips. New results are provided on an 8T SRAM cell in 7 nm technology which demonstrate the ability to measure nFET, pFET, and gate contacts simultaneously with one scan, and with a topography measurement. A second analysis was performed to demonstrate the ability of the electron beam, combined with use of the AFM diamond tip as a scalpel, to expose subsurface layers and greatly improve current data. Furthermore, the system being in vacuum provides additional benefits in eliminating confounding effects.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive AFM in SEM for 7 nm and beyond : AM: Advanced Metrology\",\"authors\":\"Gregory M. Johnson, Thomas Rodgers, H. Stegmann, F. Hitzel\",\"doi\":\"10.1109/asmc54647.2022.9792505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring surface conduction points is a well-established analytical technique in SRAM failure analysis. A novel workflow and system have been developed that makes use of an Atomic Force Microscope (AFM) inside a Scanning Electron Microscope (SEM) and is capable of using standard laser deflection based probe tips. New results are provided on an 8T SRAM cell in 7 nm technology which demonstrate the ability to measure nFET, pFET, and gate contacts simultaneously with one scan, and with a topography measurement. A second analysis was performed to demonstrate the ability of the electron beam, combined with use of the AFM diamond tip as a scalpel, to expose subsurface layers and greatly improve current data. Furthermore, the system being in vacuum provides additional benefits in eliminating confounding effects.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conductive AFM in SEM for 7 nm and beyond : AM: Advanced Metrology
Measuring surface conduction points is a well-established analytical technique in SRAM failure analysis. A novel workflow and system have been developed that makes use of an Atomic Force Microscope (AFM) inside a Scanning Electron Microscope (SEM) and is capable of using standard laser deflection based probe tips. New results are provided on an 8T SRAM cell in 7 nm technology which demonstrate the ability to measure nFET, pFET, and gate contacts simultaneously with one scan, and with a topography measurement. A second analysis was performed to demonstrate the ability of the electron beam, combined with use of the AFM diamond tip as a scalpel, to expose subsurface layers and greatly improve current data. Furthermore, the system being in vacuum provides additional benefits in eliminating confounding effects.