M. Deloge, B. Allard, P. Candelier, J. Damiens, E. Le-Roux, M. Rafik
{"title":"利用解析模型了解防熔丝位元尺寸对编程时间和精力的影响","authors":"M. Deloge, B. Allard, P. Candelier, J. Damiens, E. Le-Roux, M. Rafik","doi":"10.1109/IIRW.2010.5706507","DOIUrl":null,"url":null,"abstract":"Using TBD and Iwearout characterization and modeling, the influence of antifuse bitcell dimensions is evaluated. An analytical model based on silicon measurements and reliability laws allows the comparison of three bitcell architectures fabricated in standard CMOS 40nm (no extra processing). The model yields the time-to-breakdown and the wearout current as a function of the programming voltage and the dimensions of the antifuse bitcell. As a main result, it is demonstrated that a device with a small capacitor area exhibits shorter TBD, lower Iwearout, and hence a lower programming energy. Characterization and modeling are performed for a programming voltage range from 3.5V to 7V with a minimum TBD of 9ns.","PeriodicalId":332664,"journal":{"name":"2010 IEEE International Integrated Reliability Workshop Final Report","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding the influence of antifuse bitcell dimensions the programming time and energy using an analytical model\",\"authors\":\"M. Deloge, B. Allard, P. Candelier, J. Damiens, E. Le-Roux, M. Rafik\",\"doi\":\"10.1109/IIRW.2010.5706507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using TBD and Iwearout characterization and modeling, the influence of antifuse bitcell dimensions is evaluated. An analytical model based on silicon measurements and reliability laws allows the comparison of three bitcell architectures fabricated in standard CMOS 40nm (no extra processing). The model yields the time-to-breakdown and the wearout current as a function of the programming voltage and the dimensions of the antifuse bitcell. As a main result, it is demonstrated that a device with a small capacitor area exhibits shorter TBD, lower Iwearout, and hence a lower programming energy. Characterization and modeling are performed for a programming voltage range from 3.5V to 7V with a minimum TBD of 9ns.\",\"PeriodicalId\":332664,\"journal\":{\"name\":\"2010 IEEE International Integrated Reliability Workshop Final Report\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Integrated Reliability Workshop Final Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIRW.2010.5706507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Integrated Reliability Workshop Final Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2010.5706507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the influence of antifuse bitcell dimensions the programming time and energy using an analytical model
Using TBD and Iwearout characterization and modeling, the influence of antifuse bitcell dimensions is evaluated. An analytical model based on silicon measurements and reliability laws allows the comparison of three bitcell architectures fabricated in standard CMOS 40nm (no extra processing). The model yields the time-to-breakdown and the wearout current as a function of the programming voltage and the dimensions of the antifuse bitcell. As a main result, it is demonstrated that a device with a small capacitor area exhibits shorter TBD, lower Iwearout, and hence a lower programming energy. Characterization and modeling are performed for a programming voltage range from 3.5V to 7V with a minimum TBD of 9ns.