F. Andrieu, O. Weber, S. Baudot, C. Fenouillet-Béranger, O. Rozeau, J. Mazurier, P. Perreau, J. Eymery, O. Faynot
{"title":"完全耗尽的绝缘体上硅,具有背偏置和应变,适用于低功耗和高性能应用","authors":"F. Andrieu, O. Weber, S. Baudot, C. Fenouillet-Béranger, O. Rozeau, J. Mazurier, P. Perreau, J. Eymery, O. Faynot","doi":"10.1109/ICICDT.2010.5510295","DOIUrl":null,"url":null,"abstract":"We demonstrate that planar Fully Depleted Silicon-On-Insulator (FDSOI) architectures allow improving the electrostatic control (and in turn the dynamic performance by 22%) and the variability of Complementary Metal-Oxide-Semiconductors (CMOS) devices, compared to the bulk technology. It is thus an ideal solution for Low Power (LP) applications and SRAM stability at the 22nm node and below. Moreover, integrated on both Ultra-Thin Body and Buried oxide (UTB2), it enables the use of standard power management technique (Reverse Back or Source Biasing) with a high efficiency. Finally, some technological options exist in order to boost its ON-state current (ION) like strained SOI substrates for nMOS and embedded SiGe source/drain for pMOS.","PeriodicalId":187361,"journal":{"name":"2010 IEEE International Conference on Integrated Circuit Design and Technology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fully depleted Silicon-On-Insulator with back bias and strain for low power and high performance applications\",\"authors\":\"F. Andrieu, O. Weber, S. Baudot, C. Fenouillet-Béranger, O. Rozeau, J. Mazurier, P. Perreau, J. Eymery, O. Faynot\",\"doi\":\"10.1109/ICICDT.2010.5510295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that planar Fully Depleted Silicon-On-Insulator (FDSOI) architectures allow improving the electrostatic control (and in turn the dynamic performance by 22%) and the variability of Complementary Metal-Oxide-Semiconductors (CMOS) devices, compared to the bulk technology. It is thus an ideal solution for Low Power (LP) applications and SRAM stability at the 22nm node and below. Moreover, integrated on both Ultra-Thin Body and Buried oxide (UTB2), it enables the use of standard power management technique (Reverse Back or Source Biasing) with a high efficiency. Finally, some technological options exist in order to boost its ON-state current (ION) like strained SOI substrates for nMOS and embedded SiGe source/drain for pMOS.\",\"PeriodicalId\":187361,\"journal\":{\"name\":\"2010 IEEE International Conference on Integrated Circuit Design and Technology\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Integrated Circuit Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2010.5510295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Integrated Circuit Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2010.5510295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully depleted Silicon-On-Insulator with back bias and strain for low power and high performance applications
We demonstrate that planar Fully Depleted Silicon-On-Insulator (FDSOI) architectures allow improving the electrostatic control (and in turn the dynamic performance by 22%) and the variability of Complementary Metal-Oxide-Semiconductors (CMOS) devices, compared to the bulk technology. It is thus an ideal solution for Low Power (LP) applications and SRAM stability at the 22nm node and below. Moreover, integrated on both Ultra-Thin Body and Buried oxide (UTB2), it enables the use of standard power management technique (Reverse Back or Source Biasing) with a high efficiency. Finally, some technological options exist in order to boost its ON-state current (ION) like strained SOI substrates for nMOS and embedded SiGe source/drain for pMOS.