一种新的“I-V光谱”技术对LDMOS晶体管阈值电压和迁移率退化进行反卷积

Yen-Pu Chen, B. Mahajan, D. Varghese, S. Krishnan, V. Reddy, M. Alam
{"title":"一种新的“I-V光谱”技术对LDMOS晶体管阈值电压和迁移率退化进行反卷积","authors":"Yen-Pu Chen, B. Mahajan, D. Varghese, S. Krishnan, V. Reddy, M. Alam","doi":"10.1109/IRPS45951.2020.9128965","DOIUrl":null,"url":null,"abstract":"Although the CMOS-compatible Laterally Diffused MOSFET (LDMOS) is widely used in various applications as a versatile and efficient power electronic device, its hot carrier degradation (HCD) remains a persistent and important design challenge. None of the classical HCD models apply, because the geometric and doping complexities of the channel and drift regions create multiple hotspots with bias-dependent hot carrier injection into the oxide. To address these challenges, here we: 1) propose a novel geometrical partition of the LDMOS and represent each part by a TCAD-calibrated and experimentally validated tandem-FET compact model; 2) use the new compact model to propose an ‘ I − V spectroscopy’ methodology to deconvolve mobility and threshold degradation in the channel and the drift regions; 3) separate the degradation in the two regions by postprocessing measured I-V curves; 4) demonstrate that ΔVth determined by classical techniques, e.g., constant current (CC) or maximum transconductance (Gmmax), are contaminated by mobility degradation and must be corrected by the proposed technique for accurate lifetime projection.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel ‘I-V Spectroscopy’ Technique to Deconvolve Threshold Voltage and Mobility Degradation in LDMOS Transistors\",\"authors\":\"Yen-Pu Chen, B. Mahajan, D. Varghese, S. Krishnan, V. Reddy, M. Alam\",\"doi\":\"10.1109/IRPS45951.2020.9128965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the CMOS-compatible Laterally Diffused MOSFET (LDMOS) is widely used in various applications as a versatile and efficient power electronic device, its hot carrier degradation (HCD) remains a persistent and important design challenge. None of the classical HCD models apply, because the geometric and doping complexities of the channel and drift regions create multiple hotspots with bias-dependent hot carrier injection into the oxide. To address these challenges, here we: 1) propose a novel geometrical partition of the LDMOS and represent each part by a TCAD-calibrated and experimentally validated tandem-FET compact model; 2) use the new compact model to propose an ‘ I − V spectroscopy’ methodology to deconvolve mobility and threshold degradation in the channel and the drift regions; 3) separate the degradation in the two regions by postprocessing measured I-V curves; 4) demonstrate that ΔVth determined by classical techniques, e.g., constant current (CC) or maximum transconductance (Gmmax), are contaminated by mobility degradation and must be corrected by the proposed technique for accurate lifetime projection.\",\"PeriodicalId\":116002,\"journal\":{\"name\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS45951.2020.9128965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9128965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

尽管兼容cmos的横向扩散MOSFET (LDMOS)作为一种多功能、高效的电力电子器件广泛应用于各种应用,但其热载流子退化(HCD)仍然是一个持续存在的重要设计挑战。经典的HCD模型都不适用,因为通道和漂移区域的几何和掺杂复杂性产生了多个热点,这些热点与偏置相关的热载子注入到氧化物中。为了解决这些挑战,我们提出了一种新的LDMOS几何划分方法,并用tcad校准和实验验证的串联fet紧凑模型表示每个部分;2)利用新的紧凑模型提出了一种“I - V光谱”方法,对通道和漂移区域的迁移率和阈值退化进行反卷积;3)对实测I-V曲线进行后处理,分离两个区域的退化;4)证明ΔVth由经典技术确定,例如,恒流(CC)或最大跨导(Gmmax),受到迁移率退化的污染,必须通过所提出的技术进行校正,以获得准确的寿命预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel ‘I-V Spectroscopy’ Technique to Deconvolve Threshold Voltage and Mobility Degradation in LDMOS Transistors
Although the CMOS-compatible Laterally Diffused MOSFET (LDMOS) is widely used in various applications as a versatile and efficient power electronic device, its hot carrier degradation (HCD) remains a persistent and important design challenge. None of the classical HCD models apply, because the geometric and doping complexities of the channel and drift regions create multiple hotspots with bias-dependent hot carrier injection into the oxide. To address these challenges, here we: 1) propose a novel geometrical partition of the LDMOS and represent each part by a TCAD-calibrated and experimentally validated tandem-FET compact model; 2) use the new compact model to propose an ‘ I − V spectroscopy’ methodology to deconvolve mobility and threshold degradation in the channel and the drift regions; 3) separate the degradation in the two regions by postprocessing measured I-V curves; 4) demonstrate that ΔVth determined by classical techniques, e.g., constant current (CC) or maximum transconductance (Gmmax), are contaminated by mobility degradation and must be corrected by the proposed technique for accurate lifetime projection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1