人工神经网络训练算法的相对比较

Saurav Kumar, R. Mishra, Anuran Mitra, Soumita Biswas, Sayantani De, Raja Karmakar
{"title":"人工神经网络训练算法的相对比较","authors":"Saurav Kumar, R. Mishra, Anuran Mitra, Soumita Biswas, Sayantani De, Raja Karmakar","doi":"10.1109/ICCE50343.2020.9290718","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANNs) give a practical, general method for learning discrete-valued, real-valued, and vector-valued functions from examples. The algorithms used for training models aim to construct an optimization framework and apprehend the parameters in the target function from the provided dataset. ANN learning is vigorous to errors in the training data which has been successfully applied to scenarios like speech recognition, interpreting visual scenes and robotics. This paper basically aims to provide an experimental study to compare various optimization or training algorithms and determines the best suited optimization method corresponding to a particular dataset in terms of accuracy and loss. To the best of our knowledge, this paper is the first to consider different learning rate values to study the comparison between different training or optimization algorithms.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Relative Comparison of Training Algorithms in Artificial Neural Network\",\"authors\":\"Saurav Kumar, R. Mishra, Anuran Mitra, Soumita Biswas, Sayantani De, Raja Karmakar\",\"doi\":\"10.1109/ICCE50343.2020.9290718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Networks (ANNs) give a practical, general method for learning discrete-valued, real-valued, and vector-valued functions from examples. The algorithms used for training models aim to construct an optimization framework and apprehend the parameters in the target function from the provided dataset. ANN learning is vigorous to errors in the training data which has been successfully applied to scenarios like speech recognition, interpreting visual scenes and robotics. This paper basically aims to provide an experimental study to compare various optimization or training algorithms and determines the best suited optimization method corresponding to a particular dataset in terms of accuracy and loss. To the best of our knowledge, this paper is the first to consider different learning rate values to study the comparison between different training or optimization algorithms.\",\"PeriodicalId\":421963,\"journal\":{\"name\":\"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE50343.2020.9290718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工神经网络(ANNs)提供了一种实用的、通用的方法来学习离散值、实值和向量值函数。用于训练模型的算法旨在构建一个优化框架,并从提供的数据集中理解目标函数中的参数。人工神经网络学习对训练数据中的误差具有很强的抑制能力,已成功应用于语音识别、视觉场景解释和机器人等领域。本文的基本目的是提供一种实验研究,比较各种优化或训练算法,并在精度和损失方面确定最适合特定数据集的优化方法。据我们所知,本文是第一个考虑不同学习率值来研究不同训练或优化算法之间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Relative Comparison of Training Algorithms in Artificial Neural Network
Artificial Neural Networks (ANNs) give a practical, general method for learning discrete-valued, real-valued, and vector-valued functions from examples. The algorithms used for training models aim to construct an optimization framework and apprehend the parameters in the target function from the provided dataset. ANN learning is vigorous to errors in the training data which has been successfully applied to scenarios like speech recognition, interpreting visual scenes and robotics. This paper basically aims to provide an experimental study to compare various optimization or training algorithms and determines the best suited optimization method corresponding to a particular dataset in terms of accuracy and loss. To the best of our knowledge, this paper is the first to consider different learning rate values to study the comparison between different training or optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realization and Implementation of Optical Reversible Universal Quadruple Logic Gate (ORUQLG) Advanced Design of Transmitting Antenna System for Polarization Modulation Design and Development of Solar Power Hybrid Electric Vehicles Charging Station Performance Analysis of Multilingual Encryption for Enhancing Data Security using Cellular Automata based State Transition Mapping: A Linear Approach Online Handwritten Bangla and Devanagari Character Recognition by using CNN: A Deep Learning Concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1