用卷积神经网络表征海冰

Matthew King, Philippe Lamontagne, Louis Poirier, R. Taylor, Robert Briggs
{"title":"用卷积神经网络表征海冰","authors":"Matthew King, Philippe Lamontagne, Louis Poirier, R. Taylor, Robert Briggs","doi":"10.5957/smc-2022-116","DOIUrl":null,"url":null,"abstract":"Visual data is abundantly available and provides rich information about real-world objects. Computer vision is a substantial and growing field, which seeks to distill useful information from photographic imagery. The primary focus of this work centers on the application of machine learning based computer vision algorithms in order to produce characterizations of the visible sea ice conditions. The specific task approached herein is known as semantic segmentation; the methodology by which each region of an image, at an individual pixel level, is assigned a classification from a predetermined set of possible classes.","PeriodicalId":336268,"journal":{"name":"Day 2 Wed, September 28, 2022","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sea Ice Characterization with Convolutional Neural Networks\",\"authors\":\"Matthew King, Philippe Lamontagne, Louis Poirier, R. Taylor, Robert Briggs\",\"doi\":\"10.5957/smc-2022-116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual data is abundantly available and provides rich information about real-world objects. Computer vision is a substantial and growing field, which seeks to distill useful information from photographic imagery. The primary focus of this work centers on the application of machine learning based computer vision algorithms in order to produce characterizations of the visible sea ice conditions. The specific task approached herein is known as semantic segmentation; the methodology by which each region of an image, at an individual pixel level, is assigned a classification from a predetermined set of possible classes.\",\"PeriodicalId\":336268,\"journal\":{\"name\":\"Day 2 Wed, September 28, 2022\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 28, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5957/smc-2022-116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 28, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/smc-2022-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉数据非常丰富,提供了关于现实世界对象的丰富信息。计算机视觉是一个重要的和不断发展的领域,它试图从摄影图像中提取有用的信息。这项工作的主要焦点集中在基于机器学习的计算机视觉算法的应用上,以产生可见海冰条件的特征。本文处理的具体任务被称为语义分割;一种方法,通过该方法,图像的每个区域,在单个像素水平上,从一组预先确定的可能的类别中被分配一个分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sea Ice Characterization with Convolutional Neural Networks
Visual data is abundantly available and provides rich information about real-world objects. Computer vision is a substantial and growing field, which seeks to distill useful information from photographic imagery. The primary focus of this work centers on the application of machine learning based computer vision algorithms in order to produce characterizations of the visible sea ice conditions. The specific task approached herein is known as semantic segmentation; the methodology by which each region of an image, at an individual pixel level, is assigned a classification from a predetermined set of possible classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Implementation of Managed Pressure Drilling (MPD) System in Swamp Barge Rig to Drill Narrow Pressure Window HPHT Exploration Well Safely – Return of Experience from Kalimantan, Indonesia Floating Casings in 10,000ft Laterals with MPD in Haynesville A New Approach for Designing an Underbalanced Cementing Plug Using a Managed Pressure Cementing and Pump-Pull Method with Narrow Pore-Frac Pressure Window in HPHT Exploration Well: An Offshore East Kalimantan, Indonesia Case Study Fingerprinting Formation Breathing and Wellbore Ballooning: Getting Mixed Signals Pressurized Mud Cap Drilling Used to Drill and Complete Carbonate Gas Reservoir with Poor Injectivity and Severe Dynamic Losses Offshore Malaysia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1