基于课程学习的区域划分对象传输

Gyuho Eoh, T. Park
{"title":"基于课程学习的区域划分对象传输","authors":"Gyuho Eoh, T. Park","doi":"10.23919/ICCAS52745.2021.9649829","DOIUrl":null,"url":null,"abstract":"This paper presents a deep reinforcement learning (DRL)-based object transportation technique using a region-partitioning curriculum. Previous studies on object transportation using DRL algorithms have suffered a sparse reward problem where a robot cannot gain success experiences frequently due to random actions at the learning stage. To solve the sparse reward problem, we partition pose-initialization regions based on the distance between an object and goal, then a robot gradually extends the partitioned regions as training episodes increase. The robot has more success opportunities using this method, and thus, it can learn effective object transportation methods quickly. We demonstrate simulations to verify the proposed method.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curriculum Learning-based Object Transportation using Region Partitioning\",\"authors\":\"Gyuho Eoh, T. Park\",\"doi\":\"10.23919/ICCAS52745.2021.9649829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep reinforcement learning (DRL)-based object transportation technique using a region-partitioning curriculum. Previous studies on object transportation using DRL algorithms have suffered a sparse reward problem where a robot cannot gain success experiences frequently due to random actions at the learning stage. To solve the sparse reward problem, we partition pose-initialization regions based on the distance between an object and goal, then a robot gradually extends the partitioned regions as training episodes increase. The robot has more success opportunities using this method, and thus, it can learn effective object transportation methods quickly. We demonstrate simulations to verify the proposed method.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于区域划分课程的深度强化学习(DRL)对象传输技术。在以往使用DRL算法进行物体运输的研究中,由于机器人在学习阶段的随机行为,导致机器人无法频繁获得成功经验,存在奖励稀疏的问题。为了解决稀疏奖励问题,我们根据物体和目标之间的距离划分姿势初始化区域,然后随着训练集的增加,机器人逐渐扩展划分的区域。使用这种方法,机器人有更多的成功机会,从而可以快速学习有效的物体运输方法。我们通过仿真来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curriculum Learning-based Object Transportation using Region Partitioning
This paper presents a deep reinforcement learning (DRL)-based object transportation technique using a region-partitioning curriculum. Previous studies on object transportation using DRL algorithms have suffered a sparse reward problem where a robot cannot gain success experiences frequently due to random actions at the learning stage. To solve the sparse reward problem, we partition pose-initialization regions based on the distance between an object and goal, then a robot gradually extends the partitioned regions as training episodes increase. The robot has more success opportunities using this method, and thus, it can learn effective object transportation methods quickly. We demonstrate simulations to verify the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta Reinforcement Learning Based Underwater Manipulator Control Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on Unmanned Surface Vehicle A Method for Evaluating of Asymmetry on Cleft Lip Using Symmetry Plane Average Blurring-based Anomaly Detection for Vision-based Mask Inspection Systems Design and Fabrication of a Robotic Knee-Type Prosthetic Leg with a Two-Way Hydraulic Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1