一种新型的双捕获BE-SONOS电荷捕获NAND闪存器件克服了擦除饱和,而不使用曲率诱导场增强效应或高k (HK)/金属栅(MG)材料

H. Lue, R. Lo, C. Hsieh, P. Du, Chih-Ping Chen, T. Hsu, Kuo-Ping Chang, Y. Shih, Chih-Yuan Lu
{"title":"一种新型的双捕获BE-SONOS电荷捕获NAND闪存器件克服了擦除饱和,而不使用曲率诱导场增强效应或高k (HK)/金属栅(MG)材料","authors":"H. Lue, R. Lo, C. Hsieh, P. Du, Chih-Ping Chen, T. Hsu, Kuo-Ping Chang, Y. Shih, Chih-Yuan Lu","doi":"10.1109/IEDM.2014.7047085","DOIUrl":null,"url":null,"abstract":"Erase saturation issue is a fundamental challenge for SONOS-type charge-trapping NAND Flash devices. Nowadays the most popular way to solve this issue is to pursue either curvature-induced field enhancement effect in the nano-wire SONOS device, or HK/MG to suppress the gate injection. However, both approaches have its drawback and reliability challenges. In this work, we propose a completely different approach that utilizes a double-trapping (or double storage) layer in a barrier engineered (BE) SONOS device to overcome the erase saturation ideally. A second nitride trapping layer (N3) is stacked on top of the first blocking oxide (O3) and 1st trapping layer (N2) of the original BE-SONOS device. Both theoretical model and experimental measured results indicate that when N3 stores sufficient electron charge it can greatly suppress gate injection, allowing continuous hole injection into N2 that gives a very deep erased Vt ~ -6V. A fully-integrated 3D Vertical Gate (VG) NAND Flash test chip using this novel device has been fabricated which demonstrates excellent MLC operation window and reliability. The flat and planar topology of this double-trapping BE-SONOS device enables minimal design rule of 3D NAND Flash array and possesses superb read disturb immunity.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A novel double-trapping BE-SONOS charge-trapping NAND flash device to overcome the erase saturation without using curvature-induced field enhancement effect or high-K (HK)/metal gate (MG) materials\",\"authors\":\"H. Lue, R. Lo, C. Hsieh, P. Du, Chih-Ping Chen, T. Hsu, Kuo-Ping Chang, Y. Shih, Chih-Yuan Lu\",\"doi\":\"10.1109/IEDM.2014.7047085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Erase saturation issue is a fundamental challenge for SONOS-type charge-trapping NAND Flash devices. Nowadays the most popular way to solve this issue is to pursue either curvature-induced field enhancement effect in the nano-wire SONOS device, or HK/MG to suppress the gate injection. However, both approaches have its drawback and reliability challenges. In this work, we propose a completely different approach that utilizes a double-trapping (or double storage) layer in a barrier engineered (BE) SONOS device to overcome the erase saturation ideally. A second nitride trapping layer (N3) is stacked on top of the first blocking oxide (O3) and 1st trapping layer (N2) of the original BE-SONOS device. Both theoretical model and experimental measured results indicate that when N3 stores sufficient electron charge it can greatly suppress gate injection, allowing continuous hole injection into N2 that gives a very deep erased Vt ~ -6V. A fully-integrated 3D Vertical Gate (VG) NAND Flash test chip using this novel device has been fabricated which demonstrates excellent MLC operation window and reliability. The flat and planar topology of this double-trapping BE-SONOS device enables minimal design rule of 3D NAND Flash array and possesses superb read disturb immunity.\",\"PeriodicalId\":309325,\"journal\":{\"name\":\"2014 IEEE International Electron Devices Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2014.7047085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

擦除饱和问题是sonos型电荷捕获NAND闪存器件面临的一个基本挑战。目前解决这一问题的最流行的方法是在纳米线SONOS器件中追求曲率诱导的场增强效应,或HK/MG抑制栅注入。然而,这两种方法都有其缺点和可靠性方面的挑战。在这项工作中,我们提出了一种完全不同的方法,在屏障工程(BE) SONOS器件中利用双捕获(或双存储)层来理想地克服擦除饱和。第二层氮化物捕获层(N3)堆叠在原始BE-SONOS设备的第一层阻塞氧化物(O3)和第一层捕获层(N2)之上。理论模型和实验测量结果都表明,当N3储存了足够的电子电荷时,它可以极大地抑制栅极注入,允许在N2中连续注入空穴,从而产生非常深的擦除Vt ~ -6V。利用该器件制作了一个完全集成的3D垂直栅(VG) NAND闪存测试芯片,该芯片具有良好的MLC操作窗口和可靠性。该双捕获BE-SONOS器件的平面和平面拓扑结构使3D NAND闪存阵列的设计规则最小化,并具有极佳的读取干扰抗扰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel double-trapping BE-SONOS charge-trapping NAND flash device to overcome the erase saturation without using curvature-induced field enhancement effect or high-K (HK)/metal gate (MG) materials
Erase saturation issue is a fundamental challenge for SONOS-type charge-trapping NAND Flash devices. Nowadays the most popular way to solve this issue is to pursue either curvature-induced field enhancement effect in the nano-wire SONOS device, or HK/MG to suppress the gate injection. However, both approaches have its drawback and reliability challenges. In this work, we propose a completely different approach that utilizes a double-trapping (or double storage) layer in a barrier engineered (BE) SONOS device to overcome the erase saturation ideally. A second nitride trapping layer (N3) is stacked on top of the first blocking oxide (O3) and 1st trapping layer (N2) of the original BE-SONOS device. Both theoretical model and experimental measured results indicate that when N3 stores sufficient electron charge it can greatly suppress gate injection, allowing continuous hole injection into N2 that gives a very deep erased Vt ~ -6V. A fully-integrated 3D Vertical Gate (VG) NAND Flash test chip using this novel device has been fabricated which demonstrates excellent MLC operation window and reliability. The flat and planar topology of this double-trapping BE-SONOS device enables minimal design rule of 3D NAND Flash array and possesses superb read disturb immunity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NBTI of Ge pMOSFETs: Understanding defects and enabling lifetime prediction 55-µA GexTe1−x/Sb2Te3 superlattice topological-switching random access memory (TRAM) and study of atomic arrangement in Ge-Te and Sb-Te structures GaN-based Gate Injection Transistors for power switching applications Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester Novel intrinsic and extrinsic engineering for high-performance high-density self-aligned InGaAs MOSFETs: Precise channel thickness control and sub-40-nm metal contacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1