H. Lue, R. Lo, C. Hsieh, P. Du, Chih-Ping Chen, T. Hsu, Kuo-Ping Chang, Y. Shih, Chih-Yuan Lu
{"title":"一种新型的双捕获BE-SONOS电荷捕获NAND闪存器件克服了擦除饱和,而不使用曲率诱导场增强效应或高k (HK)/金属栅(MG)材料","authors":"H. Lue, R. Lo, C. Hsieh, P. Du, Chih-Ping Chen, T. Hsu, Kuo-Ping Chang, Y. Shih, Chih-Yuan Lu","doi":"10.1109/IEDM.2014.7047085","DOIUrl":null,"url":null,"abstract":"Erase saturation issue is a fundamental challenge for SONOS-type charge-trapping NAND Flash devices. Nowadays the most popular way to solve this issue is to pursue either curvature-induced field enhancement effect in the nano-wire SONOS device, or HK/MG to suppress the gate injection. However, both approaches have its drawback and reliability challenges. In this work, we propose a completely different approach that utilizes a double-trapping (or double storage) layer in a barrier engineered (BE) SONOS device to overcome the erase saturation ideally. A second nitride trapping layer (N3) is stacked on top of the first blocking oxide (O3) and 1st trapping layer (N2) of the original BE-SONOS device. Both theoretical model and experimental measured results indicate that when N3 stores sufficient electron charge it can greatly suppress gate injection, allowing continuous hole injection into N2 that gives a very deep erased Vt ~ -6V. A fully-integrated 3D Vertical Gate (VG) NAND Flash test chip using this novel device has been fabricated which demonstrates excellent MLC operation window and reliability. The flat and planar topology of this double-trapping BE-SONOS device enables minimal design rule of 3D NAND Flash array and possesses superb read disturb immunity.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A novel double-trapping BE-SONOS charge-trapping NAND flash device to overcome the erase saturation without using curvature-induced field enhancement effect or high-K (HK)/metal gate (MG) materials\",\"authors\":\"H. Lue, R. Lo, C. Hsieh, P. Du, Chih-Ping Chen, T. Hsu, Kuo-Ping Chang, Y. Shih, Chih-Yuan Lu\",\"doi\":\"10.1109/IEDM.2014.7047085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Erase saturation issue is a fundamental challenge for SONOS-type charge-trapping NAND Flash devices. Nowadays the most popular way to solve this issue is to pursue either curvature-induced field enhancement effect in the nano-wire SONOS device, or HK/MG to suppress the gate injection. However, both approaches have its drawback and reliability challenges. In this work, we propose a completely different approach that utilizes a double-trapping (or double storage) layer in a barrier engineered (BE) SONOS device to overcome the erase saturation ideally. A second nitride trapping layer (N3) is stacked on top of the first blocking oxide (O3) and 1st trapping layer (N2) of the original BE-SONOS device. Both theoretical model and experimental measured results indicate that when N3 stores sufficient electron charge it can greatly suppress gate injection, allowing continuous hole injection into N2 that gives a very deep erased Vt ~ -6V. A fully-integrated 3D Vertical Gate (VG) NAND Flash test chip using this novel device has been fabricated which demonstrates excellent MLC operation window and reliability. The flat and planar topology of this double-trapping BE-SONOS device enables minimal design rule of 3D NAND Flash array and possesses superb read disturb immunity.\",\"PeriodicalId\":309325,\"journal\":{\"name\":\"2014 IEEE International Electron Devices Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2014.7047085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel double-trapping BE-SONOS charge-trapping NAND flash device to overcome the erase saturation without using curvature-induced field enhancement effect or high-K (HK)/metal gate (MG) materials
Erase saturation issue is a fundamental challenge for SONOS-type charge-trapping NAND Flash devices. Nowadays the most popular way to solve this issue is to pursue either curvature-induced field enhancement effect in the nano-wire SONOS device, or HK/MG to suppress the gate injection. However, both approaches have its drawback and reliability challenges. In this work, we propose a completely different approach that utilizes a double-trapping (or double storage) layer in a barrier engineered (BE) SONOS device to overcome the erase saturation ideally. A second nitride trapping layer (N3) is stacked on top of the first blocking oxide (O3) and 1st trapping layer (N2) of the original BE-SONOS device. Both theoretical model and experimental measured results indicate that when N3 stores sufficient electron charge it can greatly suppress gate injection, allowing continuous hole injection into N2 that gives a very deep erased Vt ~ -6V. A fully-integrated 3D Vertical Gate (VG) NAND Flash test chip using this novel device has been fabricated which demonstrates excellent MLC operation window and reliability. The flat and planar topology of this double-trapping BE-SONOS device enables minimal design rule of 3D NAND Flash array and possesses superb read disturb immunity.