L. Yin, M. Fang, L. Zeng, Lilun Zhang, G. Du, Xiaoyan Liu
{"title":"利用intel MIC协处理器在天河二号上加速三维全频带自一致集成蒙特卡罗器件仿真","authors":"L. Yin, M. Fang, L. Zeng, Lilun Zhang, G. Du, Xiaoyan Liu","doi":"10.1109/IWCE.2015.7301990","DOIUrl":null,"url":null,"abstract":"We use Intel Xeon Phi Many Integrated Core (MIC) to accelerate our 3D full band self-consistent ensemble Monte Carlo simulator. We put Quantum Correction part onto MIC and others are still processed on CPU. We compare results between this newly developed MIC+CPU mode and traditional all-on-CPU mode in three different situations. We find that MIC co-processors are suitable for 3D MC simulation with large grid number and large-number computing nodes.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"127 34-35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated 3D full band self-consistent ensemble Monte Carlo device simulation utilizing intel MIC co-processors on tianhe II\",\"authors\":\"L. Yin, M. Fang, L. Zeng, Lilun Zhang, G. Du, Xiaoyan Liu\",\"doi\":\"10.1109/IWCE.2015.7301990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Intel Xeon Phi Many Integrated Core (MIC) to accelerate our 3D full band self-consistent ensemble Monte Carlo simulator. We put Quantum Correction part onto MIC and others are still processed on CPU. We compare results between this newly developed MIC+CPU mode and traditional all-on-CPU mode in three different situations. We find that MIC co-processors are suitable for 3D MC simulation with large grid number and large-number computing nodes.\",\"PeriodicalId\":165023,\"journal\":{\"name\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"127 34-35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2015.7301990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerated 3D full band self-consistent ensemble Monte Carlo device simulation utilizing intel MIC co-processors on tianhe II
We use Intel Xeon Phi Many Integrated Core (MIC) to accelerate our 3D full band self-consistent ensemble Monte Carlo simulator. We put Quantum Correction part onto MIC and others are still processed on CPU. We compare results between this newly developed MIC+CPU mode and traditional all-on-CPU mode in three different situations. We find that MIC co-processors are suitable for 3D MC simulation with large grid number and large-number computing nodes.