{"title":"低压电源的DC-DC转换技术","authors":"T. Ueno, Taichi Ogawa, T. Miyazaki, T. Itakura","doi":"10.1109/RFIT.2015.7377904","DOIUrl":null,"url":null,"abstract":"This paper describes two DC-DC conversion techniques suitable for low-voltage mobile applications. Converters using the first technique realize high efficiency under light-load conditions by having an architecture with a simple common-source amplifier and a low-power differential amplifier. The measured efficiency of the first type of converter is 67% at an output current of 23 μA. A one-shot technique in the second type of converter reduces output-voltage fluctuation. A predetermined current is injected into the output capacitor when a load transient is detected by observing the capacitor current. This technique reduces overshoot voltage by 68% at a high-to-low load transient.","PeriodicalId":422369,"journal":{"name":"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DC-DC conversion techniques for low-voltage power supplies\",\"authors\":\"T. Ueno, Taichi Ogawa, T. Miyazaki, T. Itakura\",\"doi\":\"10.1109/RFIT.2015.7377904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes two DC-DC conversion techniques suitable for low-voltage mobile applications. Converters using the first technique realize high efficiency under light-load conditions by having an architecture with a simple common-source amplifier and a low-power differential amplifier. The measured efficiency of the first type of converter is 67% at an output current of 23 μA. A one-shot technique in the second type of converter reduces output-voltage fluctuation. A predetermined current is injected into the output capacitor when a load transient is detected by observing the capacitor current. This technique reduces overshoot voltage by 68% at a high-to-low load transient.\",\"PeriodicalId\":422369,\"journal\":{\"name\":\"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT.2015.7377904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2015.7377904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DC-DC conversion techniques for low-voltage power supplies
This paper describes two DC-DC conversion techniques suitable for low-voltage mobile applications. Converters using the first technique realize high efficiency under light-load conditions by having an architecture with a simple common-source amplifier and a low-power differential amplifier. The measured efficiency of the first type of converter is 67% at an output current of 23 μA. A one-shot technique in the second type of converter reduces output-voltage fluctuation. A predetermined current is injected into the output capacitor when a load transient is detected by observing the capacitor current. This technique reduces overshoot voltage by 68% at a high-to-low load transient.