提高机器学习分类可靠性的数据融合策略

Karsten Schwalbe, Alexander Groh, Frank Hertwig, U. Scheunert
{"title":"提高机器学习分类可靠性的数据融合策略","authors":"Karsten Schwalbe, Alexander Groh, Frank Hertwig, U. Scheunert","doi":"10.1109/SDF.2019.8916636","DOIUrl":null,"url":null,"abstract":"Automatic object recognition plays a major role in many industrial applications. This task is mostly performed by using optical sensors and image processing methods. Degeneration processes, such as surface wear, however, can pose quite some challenges when it comes to high-quality optical recognition. In this article we present our solution to optical character recognition of strongly degenerated numbers, characterized by a varying embossing depth and texture intensity, imprinted on metal surfaces. Under these conditions Machine Learning (ML) based recognition models seem to perform better than conventional ones. Typically, ML models have a black box character in the sense that the algorithm steps have no direct interpretable meaning and are kind of arbitrary. Consequently, the results of such models are difficult to interpret with respect to their trustworthiness. In order to receive more reliable recognition results, we have developed a rule-based fusion strategy that combines the output of several different AI models. This approach not only leads to a higher rate of correctly recognized objects, it also indicates when the recognition result is uncertain. As a result, our method increases the process safety and makes object recognition in industrial applications more flexible and robust.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data fusion strategy to improve the realiability of machine learning based classifications\",\"authors\":\"Karsten Schwalbe, Alexander Groh, Frank Hertwig, U. Scheunert\",\"doi\":\"10.1109/SDF.2019.8916636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic object recognition plays a major role in many industrial applications. This task is mostly performed by using optical sensors and image processing methods. Degeneration processes, such as surface wear, however, can pose quite some challenges when it comes to high-quality optical recognition. In this article we present our solution to optical character recognition of strongly degenerated numbers, characterized by a varying embossing depth and texture intensity, imprinted on metal surfaces. Under these conditions Machine Learning (ML) based recognition models seem to perform better than conventional ones. Typically, ML models have a black box character in the sense that the algorithm steps have no direct interpretable meaning and are kind of arbitrary. Consequently, the results of such models are difficult to interpret with respect to their trustworthiness. In order to receive more reliable recognition results, we have developed a rule-based fusion strategy that combines the output of several different AI models. This approach not only leads to a higher rate of correctly recognized objects, it also indicates when the recognition result is uncertain. As a result, our method increases the process safety and makes object recognition in industrial applications more flexible and robust.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动目标识别在许多工业应用中起着重要作用。该任务主要是利用光学传感器和图像处理方法来完成的。然而,当涉及到高质量的光学识别时,诸如表面磨损之类的退化过程可能会带来相当大的挑战。在这篇文章中,我们提出了我们的解决方案的光学字符识别强退化数字,其特点是不同的压印深度和纹理强度,印在金属表面。在这些条件下,基于机器学习(ML)的识别模型似乎比传统模型表现得更好。通常,机器学习模型具有黑箱特征,即算法步骤没有直接的可解释意义,并且是任意的。因此,这些模型的结果很难解释其可信度。为了获得更可靠的识别结果,我们开发了一种基于规则的融合策略,该策略结合了几个不同的人工智能模型的输出。该方法不仅提高了物体的正确率,而且在识别结果不确定的情况下也能有效地进行识别。结果表明,该方法提高了过程安全性,使工业应用中的目标识别更加灵活和健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data fusion strategy to improve the realiability of machine learning based classifications
Automatic object recognition plays a major role in many industrial applications. This task is mostly performed by using optical sensors and image processing methods. Degeneration processes, such as surface wear, however, can pose quite some challenges when it comes to high-quality optical recognition. In this article we present our solution to optical character recognition of strongly degenerated numbers, characterized by a varying embossing depth and texture intensity, imprinted on metal surfaces. Under these conditions Machine Learning (ML) based recognition models seem to perform better than conventional ones. Typically, ML models have a black box character in the sense that the algorithm steps have no direct interpretable meaning and are kind of arbitrary. Consequently, the results of such models are difficult to interpret with respect to their trustworthiness. In order to receive more reliable recognition results, we have developed a rule-based fusion strategy that combines the output of several different AI models. This approach not only leads to a higher rate of correctly recognized objects, it also indicates when the recognition result is uncertain. As a result, our method increases the process safety and makes object recognition in industrial applications more flexible and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Environments Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications Multi-Model Bayesian Kriging for Urban Traffic State Prediction Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images Comparison of Track to Track fusion methods for nonlinear process and measurement models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1