GaN HEMT微波器件的可靠性物理:缩放时代

E. Zanoni, M. Meneghini, G. Meneghesso, F. Rampazzo, D. Marcon, V. G. Zhan, F. Chiocchetta, A. Graff, F. Altmann, M. Simon-Najasek, D. Poppitz
{"title":"GaN HEMT微波器件的可靠性物理:缩放时代","authors":"E. Zanoni, M. Meneghini, G. Meneghesso, F. Rampazzo, D. Marcon, V. G. Zhan, F. Chiocchetta, A. Graff, F. Altmann, M. Simon-Najasek, D. Poppitz","doi":"10.1109/IRPS45951.2020.9128358","DOIUrl":null,"url":null,"abstract":"This paper reviews failure modes and mechanisms of 0.5 μm, 0.25 μm and 0.15 μm AlGaN/GaN HEMTs for microwave and millimeter-wave applications. Early devices adopting Ni/Pt/Au metallization were found to be affected by sidewall interdiffusion of Au and O, followed by electrochemical oxidation of AlGaN, a problem which was solved by adopting a new metallization and passivation scheme providing 0.25 μm devices capable of withstanding 24h at VDS = 60V, on-state, Tch = 375°C with no failure. 4000 h long-term thermal storage tests with no bias identified a non-monotonic behaviour of gate Schottky barrier height, causing a temporary increase of gate leakage current which presented no risk for device reliability. Beside contact-related degradation mechanisms, hot electron effects become increasingly more relevant during DC life tests (inducing a 10% increase of on-resistance), rf tests (creating or re-activating deep levels, which increase current-collapse and reduce rf output power and gain). RF tests are the harshest ones for hot-electron degradation, which represents the limiting factor for GaN HEMTs having LG ≤ 0.15 μm.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reliability Physics of GaN HEMT Microwave Devices: The Age of Scaling\",\"authors\":\"E. Zanoni, M. Meneghini, G. Meneghesso, F. Rampazzo, D. Marcon, V. G. Zhan, F. Chiocchetta, A. Graff, F. Altmann, M. Simon-Najasek, D. Poppitz\",\"doi\":\"10.1109/IRPS45951.2020.9128358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews failure modes and mechanisms of 0.5 μm, 0.25 μm and 0.15 μm AlGaN/GaN HEMTs for microwave and millimeter-wave applications. Early devices adopting Ni/Pt/Au metallization were found to be affected by sidewall interdiffusion of Au and O, followed by electrochemical oxidation of AlGaN, a problem which was solved by adopting a new metallization and passivation scheme providing 0.25 μm devices capable of withstanding 24h at VDS = 60V, on-state, Tch = 375°C with no failure. 4000 h long-term thermal storage tests with no bias identified a non-monotonic behaviour of gate Schottky barrier height, causing a temporary increase of gate leakage current which presented no risk for device reliability. Beside contact-related degradation mechanisms, hot electron effects become increasingly more relevant during DC life tests (inducing a 10% increase of on-resistance), rf tests (creating or re-activating deep levels, which increase current-collapse and reduce rf output power and gain). RF tests are the harshest ones for hot-electron degradation, which represents the limiting factor for GaN HEMTs having LG ≤ 0.15 μm.\",\"PeriodicalId\":116002,\"journal\":{\"name\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS45951.2020.9128358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9128358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文综述了用于微波和毫米波应用的0.5 μm、0.25 μm和0.15 μm AlGaN/GaN hemt的失效模式和机理。采用Ni/Pt/Au金属化的早期器件受到Au和O的侧壁互扩散的影响,随后AlGaN的电化学氧化,采用一种新的金属化钝化方案解决了这一问题,该方案提供了0.25 μm器件在VDS = 60V, on-state, Tch = 375°C下能够承受24小时而不失效。无偏置的4000小时长期储热试验确定栅极肖特基势垒高度的非单调行为,导致栅极泄漏电流暂时增加,但对器件可靠性没有风险。除了与接触相关的退化机制外,热电子效应在直流寿命测试(导致导通电阻增加10%)、射频测试(产生或重新激活深电平,这会增加电流崩溃并降低射频输出功率和增益)中变得越来越重要。对于LG≤0.15 μm的GaN hemt, RF测试是最苛刻的热电子降解测试,这是限制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability Physics of GaN HEMT Microwave Devices: The Age of Scaling
This paper reviews failure modes and mechanisms of 0.5 μm, 0.25 μm and 0.15 μm AlGaN/GaN HEMTs for microwave and millimeter-wave applications. Early devices adopting Ni/Pt/Au metallization were found to be affected by sidewall interdiffusion of Au and O, followed by electrochemical oxidation of AlGaN, a problem which was solved by adopting a new metallization and passivation scheme providing 0.25 μm devices capable of withstanding 24h at VDS = 60V, on-state, Tch = 375°C with no failure. 4000 h long-term thermal storage tests with no bias identified a non-monotonic behaviour of gate Schottky barrier height, causing a temporary increase of gate leakage current which presented no risk for device reliability. Beside contact-related degradation mechanisms, hot electron effects become increasingly more relevant during DC life tests (inducing a 10% increase of on-resistance), rf tests (creating or re-activating deep levels, which increase current-collapse and reduce rf output power and gain). RF tests are the harshest ones for hot-electron degradation, which represents the limiting factor for GaN HEMTs having LG ≤ 0.15 μm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1