计算叠加作为增强产品上叠加控制的使能器

Leon van Dijk, K. M. Adal, Sepideh Golmakaniyoon, B. Le-Gratiet, Niyam Haque, Reza Sahraeian, A. Lam, Richard J. F. van Haren
{"title":"计算叠加作为增强产品上叠加控制的使能器","authors":"Leon van Dijk, K. M. Adal, Sepideh Golmakaniyoon, B. Le-Gratiet, Niyam Haque, Reza Sahraeian, A. Lam, Richard J. F. van Haren","doi":"10.1109/asmc54647.2022.9792531","DOIUrl":null,"url":null,"abstract":"Computational overlay is developed based on a hybrid approach that combines physical modeling with machine learning. The performance of computational overlay is evaluated on the critical overlay between contact and gate layers. A prediction performance of ~0.7 is achieved in terms of the R2 statistic. The computational overlay model is able to follow variations in overlay, and can be used to establish a link between sources of overlay errors and the actual overlay performance. Furthermore, we will assess how computational overlay-based exposure corrections can be used to reduce the intra-field magnification error variation that is observed.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational overlay as enabler for enhanced on-product overlay control\",\"authors\":\"Leon van Dijk, K. M. Adal, Sepideh Golmakaniyoon, B. Le-Gratiet, Niyam Haque, Reza Sahraeian, A. Lam, Richard J. F. van Haren\",\"doi\":\"10.1109/asmc54647.2022.9792531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational overlay is developed based on a hybrid approach that combines physical modeling with machine learning. The performance of computational overlay is evaluated on the critical overlay between contact and gate layers. A prediction performance of ~0.7 is achieved in terms of the R2 statistic. The computational overlay model is able to follow variations in overlay, and can be used to establish a link between sources of overlay errors and the actual overlay performance. Furthermore, we will assess how computational overlay-based exposure corrections can be used to reduce the intra-field magnification error variation that is observed.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算叠加是基于物理建模与机器学习相结合的混合方法开发的。在接触层和栅极层之间的临界覆盖层上对计算覆盖层的性能进行了评价。在R2统计量方面实现了~0.7的预测性能。计算叠加模型能够跟踪叠加的变化,并可用于建立叠加误差源与实际叠加性能之间的联系。此外,我们将评估如何使用基于计算叠加的曝光校正来减少观察到的场内放大误差变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational overlay as enabler for enhanced on-product overlay control
Computational overlay is developed based on a hybrid approach that combines physical modeling with machine learning. The performance of computational overlay is evaluated on the critical overlay between contact and gate layers. A prediction performance of ~0.7 is achieved in terms of the R2 statistic. The computational overlay model is able to follow variations in overlay, and can be used to establish a link between sources of overlay errors and the actual overlay performance. Furthermore, we will assess how computational overlay-based exposure corrections can be used to reduce the intra-field magnification error variation that is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy Supply crisis parts commodities management during unplanned FAB shutdown recovery Nuisance Rate Improvement of E-beam Defect Classification Real-Time Automated Socket Inspection using Advanced Computer Vision and Machine Learning : DI: Defect Inspection and Reduction Negative Mode E-Beam Inspection of the Contact Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1