单壁碳纳米管功能化微机械石英谐振器

A. Goyal, P. Joshi, S. Tadigadapa, A. Gupta, P. Eklund
{"title":"单壁碳纳米管功能化微机械石英谐振器","authors":"A. Goyal, P. Joshi, S. Tadigadapa, A. Gupta, P. Eklund","doi":"10.1109/ICSENS.2005.1597831","DOIUrl":null,"url":null,"abstract":"Single walled carbon nanotubes (SWNTs) are reservoirs of gases as they can adsorb on their walls as well as retain gas molecules in their hollow cylindrical interior. This has important applications for example in fuel cell technology for hydrogen storage, as a gas sensor for realization of artificial nose, etc. Storage of gases by carbon nanotubes have been recently investigated by monitoring changes in their thermoelectric power and electrical resistivity due to their interaction with gas molecules. In this paper we present a gravimetric study of interaction of gas molecules with isolated SWNTs using a micromachined ultrasensitive quartz crystal microbalance (QCM). The adsorption and desorption of gas molecules with different molecular weights from carbon nanotubes revealed that changes in resonance frequency and quality factor of the resonating crystal scale as approximately M0.45, where M is the mass the of the gas molecule as compared to M1/3 dependence observed in case of changes in thermoelectric power and electrical resistance for thin films of the carbon nanotubes. The use of QCM enables room temperature probing of gas interaction with isolated single walled carbon nanotubes. Specific interaction of gases with carbon nanotubes on QCM provides potential application of the device as a gas sensor","PeriodicalId":119985,"journal":{"name":"IEEE Sensors, 2005.","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Micromachined quartz resonator functionalized with single walled carbon nanotubes\",\"authors\":\"A. Goyal, P. Joshi, S. Tadigadapa, A. Gupta, P. Eklund\",\"doi\":\"10.1109/ICSENS.2005.1597831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single walled carbon nanotubes (SWNTs) are reservoirs of gases as they can adsorb on their walls as well as retain gas molecules in their hollow cylindrical interior. This has important applications for example in fuel cell technology for hydrogen storage, as a gas sensor for realization of artificial nose, etc. Storage of gases by carbon nanotubes have been recently investigated by monitoring changes in their thermoelectric power and electrical resistivity due to their interaction with gas molecules. In this paper we present a gravimetric study of interaction of gas molecules with isolated SWNTs using a micromachined ultrasensitive quartz crystal microbalance (QCM). The adsorption and desorption of gas molecules with different molecular weights from carbon nanotubes revealed that changes in resonance frequency and quality factor of the resonating crystal scale as approximately M0.45, where M is the mass the of the gas molecule as compared to M1/3 dependence observed in case of changes in thermoelectric power and electrical resistance for thin films of the carbon nanotubes. The use of QCM enables room temperature probing of gas interaction with isolated single walled carbon nanotubes. Specific interaction of gases with carbon nanotubes on QCM provides potential application of the device as a gas sensor\",\"PeriodicalId\":119985,\"journal\":{\"name\":\"IEEE Sensors, 2005.\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2005.1597831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2005.1597831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单壁碳纳米管(SWNTs)是气体的储存库,因为它们可以吸附在其壁上,并将气体分子保留在其空心圆柱形内部。这在燃料电池技术中有重要的应用,例如用于储氢的燃料电池技术,作为实现人工鼻子的气体传感器等。由于碳纳米管与气体分子的相互作用,通过监测其热电功率和电阻率的变化,研究了碳纳米管对气体的储存。在本文中,我们使用微机械超灵敏石英晶体微天平(QCM)对气体分子与孤立的单壁碳纳米管的相互作用进行了重量学研究。不同分子量气体分子对碳纳米管的吸附和解吸表明,谐振晶体尺度的共振频率和质量因子的变化约为M0.45,其中M为气体分子的质量,而碳纳米管薄膜的热电功率和电阻变化时,谐振晶体尺度的共振频率和质量因子的变化为M1/3。QCM的使用可以在室温下探测气体与孤立的单壁碳纳米管的相互作用。气体与碳纳米管在QCM上的特殊相互作用为该器件作为气体传感器提供了潜在的应用前景
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micromachined quartz resonator functionalized with single walled carbon nanotubes
Single walled carbon nanotubes (SWNTs) are reservoirs of gases as they can adsorb on their walls as well as retain gas molecules in their hollow cylindrical interior. This has important applications for example in fuel cell technology for hydrogen storage, as a gas sensor for realization of artificial nose, etc. Storage of gases by carbon nanotubes have been recently investigated by monitoring changes in their thermoelectric power and electrical resistivity due to their interaction with gas molecules. In this paper we present a gravimetric study of interaction of gas molecules with isolated SWNTs using a micromachined ultrasensitive quartz crystal microbalance (QCM). The adsorption and desorption of gas molecules with different molecular weights from carbon nanotubes revealed that changes in resonance frequency and quality factor of the resonating crystal scale as approximately M0.45, where M is the mass the of the gas molecule as compared to M1/3 dependence observed in case of changes in thermoelectric power and electrical resistance for thin films of the carbon nanotubes. The use of QCM enables room temperature probing of gas interaction with isolated single walled carbon nanotubes. Specific interaction of gases with carbon nanotubes on QCM provides potential application of the device as a gas sensor
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batch fabrication of micro-coils for MR spectroscopy on silicon Iridium oxide reference electrodes for neurochemical sensing with MEMS microelectrode arrays Emissions sensors for high temperature fuel cell applications Device level vacuum packaged micromachined infrared detectors on flexible substrates A CMOS time-of-flight range image sensor with gates on field oxide structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1