用于光刻热点检测的混合量子经典机器学习

Yuanfu Yang, Min Sun
{"title":"用于光刻热点检测的混合量子经典机器学习","authors":"Yuanfu Yang, Min Sun","doi":"10.1109/asmc54647.2022.9792509","DOIUrl":null,"url":null,"abstract":"In advanced semiconductor process technology, lithography hotspot detection has become an essential task in design for manufacturability. The ability to detect and repair lithography hotspots that can affect printability is critical to improving yield and productivity. Machine learning technology has become a powerful tool in a variety of applications, from finance to manufacturing and computer vision. The use of quantum systems to process classical data using machine learning algorithms has created an emerging field of research, namely quantum machine learning (QML). We explore the possibility of converting a novel machine learning model to a hybrid quantum-classical machine learning that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. In addition, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities. Then we compare their training performance to quantify the expected benefits. These results can be used to build a future roadmap to develop circuit-based hybrid quantum-classical machine learning for lithography hotspot detection.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Quantum-Classical Machine Learning for Lithography Hotspot Detection\",\"authors\":\"Yuanfu Yang, Min Sun\",\"doi\":\"10.1109/asmc54647.2022.9792509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In advanced semiconductor process technology, lithography hotspot detection has become an essential task in design for manufacturability. The ability to detect and repair lithography hotspots that can affect printability is critical to improving yield and productivity. Machine learning technology has become a powerful tool in a variety of applications, from finance to manufacturing and computer vision. The use of quantum systems to process classical data using machine learning algorithms has created an emerging field of research, namely quantum machine learning (QML). We explore the possibility of converting a novel machine learning model to a hybrid quantum-classical machine learning that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. In addition, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities. Then we compare their training performance to quantify the expected benefits. These results can be used to build a future roadmap to develop circuit-based hybrid quantum-classical machine learning for lithography hotspot detection.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在先进的半导体工艺技术中,光刻热点检测已成为可制造性设计中的一项重要任务。检测和修复影响印刷适性的光刻热点的能力对于提高产量和生产率至关重要。机器学习技术已经成为从金融到制造业和计算机视觉等各种应用领域的强大工具。使用量子系统使用机器学习算法处理经典数据已经创建了一个新兴的研究领域,即量子机器学习(QML)。我们探索了将一种新的机器学习模型转换为量子-经典混合机器学习的可能性,这种混合机器学习受益于使用变分量子层。我们证明了这种混合模型可以执行类似的经典方法。此外,我们还探索了具有不同表达能力和纠缠能力的参数化量子电路(PQC)。然后我们比较他们的训练表现来量化预期收益。这些结果可用于构建未来的路线图,以开发用于光刻热点检测的基于电路的混合量子经典机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Quantum-Classical Machine Learning for Lithography Hotspot Detection
In advanced semiconductor process technology, lithography hotspot detection has become an essential task in design for manufacturability. The ability to detect and repair lithography hotspots that can affect printability is critical to improving yield and productivity. Machine learning technology has become a powerful tool in a variety of applications, from finance to manufacturing and computer vision. The use of quantum systems to process classical data using machine learning algorithms has created an emerging field of research, namely quantum machine learning (QML). We explore the possibility of converting a novel machine learning model to a hybrid quantum-classical machine learning that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. In addition, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities. Then we compare their training performance to quantify the expected benefits. These results can be used to build a future roadmap to develop circuit-based hybrid quantum-classical machine learning for lithography hotspot detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy Supply crisis parts commodities management during unplanned FAB shutdown recovery Nuisance Rate Improvement of E-beam Defect Classification Real-Time Automated Socket Inspection using Advanced Computer Vision and Machine Learning : DI: Defect Inspection and Reduction Negative Mode E-Beam Inspection of the Contact Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1