{"title":"Au/Pt/ ti基微加热器的热分析","authors":"Yong Zhang, Chengqun Yu, Fei Yang, Johan Liu","doi":"10.23919/empc53418.2021.9584953","DOIUrl":null,"url":null,"abstract":"A thin film Gold/Platinum/Titanium (Au/Pt/Ti) - based microheater with pectination construction and a four-point probe was fabricated on a silica substrate. A standard lithography process was used to transfer the circuit pattern onto the substrate, and then Au/Pt/Ti was deposited on the substrate by an evaporator. Standard calibration was carried out at various temperatures, which can be obtained the relationship between the temperature and the resistance of the microheater, the results show that the Au/Pt/Ti-based microheater has a good linear relationship between the temperature and the resistance, indicating the microheater can also be used as a temperature sensor. Furthermore, the effects of different input powers, the geometry, and the thickness of the thin-film metals of the microheater were investigated and discussed. Finally, a finite element model was set up to see the temperature distribution of the microheater after the electric potential is applied.","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Analysis of An Au/Pt/Ti-Based Microheater\",\"authors\":\"Yong Zhang, Chengqun Yu, Fei Yang, Johan Liu\",\"doi\":\"10.23919/empc53418.2021.9584953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thin film Gold/Platinum/Titanium (Au/Pt/Ti) - based microheater with pectination construction and a four-point probe was fabricated on a silica substrate. A standard lithography process was used to transfer the circuit pattern onto the substrate, and then Au/Pt/Ti was deposited on the substrate by an evaporator. Standard calibration was carried out at various temperatures, which can be obtained the relationship between the temperature and the resistance of the microheater, the results show that the Au/Pt/Ti-based microheater has a good linear relationship between the temperature and the resistance, indicating the microheater can also be used as a temperature sensor. Furthermore, the effects of different input powers, the geometry, and the thickness of the thin-film metals of the microheater were investigated and discussed. Finally, a finite element model was set up to see the temperature distribution of the microheater after the electric potential is applied.\",\"PeriodicalId\":348887,\"journal\":{\"name\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/empc53418.2021.9584953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9584953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A thin film Gold/Platinum/Titanium (Au/Pt/Ti) - based microheater with pectination construction and a four-point probe was fabricated on a silica substrate. A standard lithography process was used to transfer the circuit pattern onto the substrate, and then Au/Pt/Ti was deposited on the substrate by an evaporator. Standard calibration was carried out at various temperatures, which can be obtained the relationship between the temperature and the resistance of the microheater, the results show that the Au/Pt/Ti-based microheater has a good linear relationship between the temperature and the resistance, indicating the microheater can also be used as a temperature sensor. Furthermore, the effects of different input powers, the geometry, and the thickness of the thin-film metals of the microheater were investigated and discussed. Finally, a finite element model was set up to see the temperature distribution of the microheater after the electric potential is applied.