M. Hara, H. Aoki, T. Masuzumi, D. Watanabe, C. Kimura, T. Sugino
{"title":"高抑制32nm节点Cu/Low-K互连的极薄腺嘌呤层性质","authors":"M. Hara, H. Aoki, T. Masuzumi, D. Watanabe, C. Kimura, T. Sugino","doi":"10.1109/VTSA.2009.5159269","DOIUrl":null,"url":null,"abstract":"An effective inhibition with very thin layer is required for Cu/Low-K interconnection of next generation devices. We have achieved an effective suppression of Cu oxidation using adenine as an environmentally friendly material. By using electrochemical measurements, we find that the adenine layer can inhibit Cu oxidation by forming the very thin layer compared with Benzotriazol (BTA) as a conventional Cu inhibitor.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of very thin adenine layer with high inhibition for 32nm node Cu/Low-K interconnection\",\"authors\":\"M. Hara, H. Aoki, T. Masuzumi, D. Watanabe, C. Kimura, T. Sugino\",\"doi\":\"10.1109/VTSA.2009.5159269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective inhibition with very thin layer is required for Cu/Low-K interconnection of next generation devices. We have achieved an effective suppression of Cu oxidation using adenine as an environmentally friendly material. By using electrochemical measurements, we find that the adenine layer can inhibit Cu oxidation by forming the very thin layer compared with Benzotriazol (BTA) as a conventional Cu inhibitor.\",\"PeriodicalId\":309622,\"journal\":{\"name\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTSA.2009.5159269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties of very thin adenine layer with high inhibition for 32nm node Cu/Low-K interconnection
An effective inhibition with very thin layer is required for Cu/Low-K interconnection of next generation devices. We have achieved an effective suppression of Cu oxidation using adenine as an environmentally friendly material. By using electrochemical measurements, we find that the adenine layer can inhibit Cu oxidation by forming the very thin layer compared with Benzotriazol (BTA) as a conventional Cu inhibitor.