含置信限的随机串音分析非参数代理模型

P. Manfredi, R. Trinchero
{"title":"含置信限的随机串音分析非参数代理模型","authors":"P. Manfredi, R. Trinchero","doi":"10.1109/SPI52361.2021.9505176","DOIUrl":null,"url":null,"abstract":"This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.","PeriodicalId":440368,"journal":{"name":"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nonparametric Surrogate Model for Stochastic Crosstalk Analysis Including Confidence Bounds\",\"authors\":\"P. Manfredi, R. Trinchero\",\"doi\":\"10.1109/SPI52361.2021.9505176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.\",\"PeriodicalId\":440368,\"journal\":{\"name\":\"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI52361.2021.9505176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI52361.2021.9505176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于高斯过程回归的概率非参数代理模型,用于在预测统计量上包含置信限的不确定性量化任务。将该方法的性能与参数稀疏多项式混沌展开和非参数最小二乘支持向量机回归两种最新技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nonparametric Surrogate Model for Stochastic Crosstalk Analysis Including Confidence Bounds
This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Density RRAM Arrays With Improved Thermal and Signal Integrity The Sensitivity of ENRZ to Skew - In Comparison to NRZ, PAM3, and PAM4 A Tunable Macro-Modeling Method for Signal Transition in mm-Wave Flip-Chip Technology An Automated Framework for Variability Analysis using Simulated Annealing A Compact and Broadband On-Chip Delay Line Design Based on the Bridged T-Coil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1