高k间隔和负电容对双栅无结晶体管提高短通道抗扰度和可靠性的影响

Hema Mehta, H. Kaur
{"title":"高k间隔和负电容对双栅无结晶体管提高短通道抗扰度和可靠性的影响","authors":"Hema Mehta, H. Kaur","doi":"10.1109/ICDCSYST.2018.8605167","DOIUrl":null,"url":null,"abstract":"In the present work, the impact of high-k spacers and Negative Capacitance (NC) has been examined on the performance of nanoscale Double Gate Junctionless Transistors by self consistently solving Landau Khalatnikov equation with TCAD simulations. Ferroelectric hafnium oxide is considered in gate stack with interfacial layer of silicon dioxide. The impact of different dielectric constants of spacer and different spacer lengths have been explored extensively on various electrical parameters. It has been demonstrated that high-k spacers significantly improve the gate controllability, thereby, further enhancing the negative capacitance (NC) effect of ferroelectric layer on device operation. The subthreshold swing values as low as 10mV/dec have been obtained along with substantial improvement in Ion/Ioff ratio (about 3 orders), thereby, indicating suitability of the device for future ultra low power electronic applications.","PeriodicalId":175583,"journal":{"name":"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of High-k spacer and Negative Capacitance on Double Gate Junctionless Transistor for Improved Short Channel Immunity and Reliability\",\"authors\":\"Hema Mehta, H. Kaur\",\"doi\":\"10.1109/ICDCSYST.2018.8605167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, the impact of high-k spacers and Negative Capacitance (NC) has been examined on the performance of nanoscale Double Gate Junctionless Transistors by self consistently solving Landau Khalatnikov equation with TCAD simulations. Ferroelectric hafnium oxide is considered in gate stack with interfacial layer of silicon dioxide. The impact of different dielectric constants of spacer and different spacer lengths have been explored extensively on various electrical parameters. It has been demonstrated that high-k spacers significantly improve the gate controllability, thereby, further enhancing the negative capacitance (NC) effect of ferroelectric layer on device operation. The subthreshold swing values as low as 10mV/dec have been obtained along with substantial improvement in Ion/Ioff ratio (about 3 orders), thereby, indicating suitability of the device for future ultra low power electronic applications.\",\"PeriodicalId\":175583,\"journal\":{\"name\":\"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSYST.2018.8605167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSYST.2018.8605167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用自一致求解朗道-卡拉特尼科夫方程的TCAD仿真方法,研究了高k间隔层和负电容(NC)对纳米双栅无结晶体管性能的影响。考虑了以二氧化硅为界面层的栅堆中铁电性氧化铪。研究了不同介电常数和间隔片长度对各种电参数的影响。研究表明,高k间隔层显著提高了栅极的可控性,从而进一步增强了铁电层的负电容(NC)对器件工作的影响。亚阈值摆幅值低至10mV/dec,离子/ off比大幅提高(约3个数量级),从而表明该器件适合未来的超低功耗电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of High-k spacer and Negative Capacitance on Double Gate Junctionless Transistor for Improved Short Channel Immunity and Reliability
In the present work, the impact of high-k spacers and Negative Capacitance (NC) has been examined on the performance of nanoscale Double Gate Junctionless Transistors by self consistently solving Landau Khalatnikov equation with TCAD simulations. Ferroelectric hafnium oxide is considered in gate stack with interfacial layer of silicon dioxide. The impact of different dielectric constants of spacer and different spacer lengths have been explored extensively on various electrical parameters. It has been demonstrated that high-k spacers significantly improve the gate controllability, thereby, further enhancing the negative capacitance (NC) effect of ferroelectric layer on device operation. The subthreshold swing values as low as 10mV/dec have been obtained along with substantial improvement in Ion/Ioff ratio (about 3 orders), thereby, indicating suitability of the device for future ultra low power electronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Power Dynamic Comparator For A 12-Bit Pipelined Successive Approximation Register (SAR) ADC A Comparative Study of Pulse Triggered Flipflops Pulsed Laser Deposited Molybdenum Oxides (MoO3 & MoO2) Thin Films for Nanoelectronics Device Application Comparison of Braun Multiplier and Wallace Multiplier Techniques in VLSI Sensor Networks based Water Quality Monitoring Systems for Intensive Fish Culture -A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1