大数据探索需要可视化和数据基础设施之间的协作

HILDA '16 Pub Date : 2016-06-26 DOI:10.1145/2939502.2939518
Danyel Fisher
{"title":"大数据探索需要可视化和数据基础设施之间的协作","authors":"Danyel Fisher","doi":"10.1145/2939502.2939518","DOIUrl":null,"url":null,"abstract":"As datasets grow to tera- and petabyte sizes, exploratory data visualization becomes very difficult: a screen is limited to a few million pixels, and main memory to a few tens of millions of data points. Yet these very large scale analyses are of tremendous interest to industry and academia. This paper discusses some of the major challenges involved in data analytics at scale, including issues of computation, communication, and rendering. It identifies techniques for handling large scale data, grouped into \"look at less of it,\" and \"look at it faster.\" Using these techniques involves a number of difficult design tradeoffs for both the ways that data can be represented, and the ways that users can interact with the visualizations.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Big data exploration requires collaboration between visualization and data infrastructures\",\"authors\":\"Danyel Fisher\",\"doi\":\"10.1145/2939502.2939518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As datasets grow to tera- and petabyte sizes, exploratory data visualization becomes very difficult: a screen is limited to a few million pixels, and main memory to a few tens of millions of data points. Yet these very large scale analyses are of tremendous interest to industry and academia. This paper discusses some of the major challenges involved in data analytics at scale, including issues of computation, communication, and rendering. It identifies techniques for handling large scale data, grouped into \\\"look at less of it,\\\" and \\\"look at it faster.\\\" Using these techniques involves a number of difficult design tradeoffs for both the ways that data can be represented, and the ways that users can interact with the visualizations.\",\"PeriodicalId\":356971,\"journal\":{\"name\":\"HILDA '16\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HILDA '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2939502.2939518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

当数据集增长到兆字节和拍字节大小时,探索性数据可视化变得非常困难:屏幕被限制为几百万像素,主存储器被限制为几千万个数据点。然而,这些非常大规模的分析引起了工业界和学术界的极大兴趣。本文讨论了涉及大规模数据分析的一些主要挑战,包括计算、通信和呈现问题。它确定了处理大规模数据的技术,分为“少看”和“快看”。使用这些技术需要在数据的表示方式和用户与可视化交互的方式方面进行许多困难的设计权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data exploration requires collaboration between visualization and data infrastructures
As datasets grow to tera- and petabyte sizes, exploratory data visualization becomes very difficult: a screen is limited to a few million pixels, and main memory to a few tens of millions of data points. Yet these very large scale analyses are of tremendous interest to industry and academia. This paper discusses some of the major challenges involved in data analytics at scale, including issues of computation, communication, and rendering. It identifies techniques for handling large scale data, grouped into "look at less of it," and "look at it faster." Using these techniques involves a number of difficult design tradeoffs for both the ways that data can be represented, and the ways that users can interact with the visualizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VisTrees: fast indexes for interactive data exploration PFunk-H: approximate query processing using perceptual models Towards reliable interactive data cleaning: a user survey and recommendations ModelDB: a system for machine learning model management TrendQuery: a system for interactive exploration of trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1