使用自适应波形分裂(AWS)快速准确地将老化纳入电路的方法

Subrat Mishra, P. Weckx, Ji-Yung Lin, B. Kaczer, D. Linten, A. Spessot, F. Catthoor
{"title":"使用自适应波形分裂(AWS)快速准确地将老化纳入电路的方法","authors":"Subrat Mishra, P. Weckx, Ji-Yung Lin, B. Kaczer, D. Linten, A. Spessot, F. Catthoor","doi":"10.1109/IRPS45951.2020.9129351","DOIUrl":null,"url":null,"abstract":"A common approach to incorporate workload dependent aging in circuits is to use an effective stress time or so-called signal probability (SP) to calculate degradation under realistic workload scenarios. However, this approach is not fully physics-based and incurs erroneous estimation of degradation. Moreover, cycle-accurate (CA) simulations are computationally expensive. In this paper, a relatively fast yet accurate, adaptive waveform splitting (AWS) algorithm is proposed to enable fast calculation of workload-dependent device aging. The proposed algorithm has been adopted to perform aging estimation of large circuits under specific workload scenarios.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast & Accurate Methodology for Aging Incorporation in Circuits using Adaptive Waveform Splitting (AWS)\",\"authors\":\"Subrat Mishra, P. Weckx, Ji-Yung Lin, B. Kaczer, D. Linten, A. Spessot, F. Catthoor\",\"doi\":\"10.1109/IRPS45951.2020.9129351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common approach to incorporate workload dependent aging in circuits is to use an effective stress time or so-called signal probability (SP) to calculate degradation under realistic workload scenarios. However, this approach is not fully physics-based and incurs erroneous estimation of degradation. Moreover, cycle-accurate (CA) simulations are computationally expensive. In this paper, a relatively fast yet accurate, adaptive waveform splitting (AWS) algorithm is proposed to enable fast calculation of workload-dependent device aging. The proposed algorithm has been adopted to perform aging estimation of large circuits under specific workload scenarios.\",\"PeriodicalId\":116002,\"journal\":{\"name\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS45951.2020.9129351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9129351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在电路中纳入工作负载相关老化的一种常用方法是使用有效应力时间或所谓的信号概率(SP)来计算实际工作负载场景下的退化。然而,这种方法不是完全基于物理的,并且会导致对退化的错误估计。此外,周期精确(CA)模拟在计算上是昂贵的。本文提出了一种相对快速而准确的自适应波形分割(AWS)算法,以实现与工作负载相关的设备老化的快速计算。该算法已被用于大型电路在特定工作负载下的老化估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast & Accurate Methodology for Aging Incorporation in Circuits using Adaptive Waveform Splitting (AWS)
A common approach to incorporate workload dependent aging in circuits is to use an effective stress time or so-called signal probability (SP) to calculate degradation under realistic workload scenarios. However, this approach is not fully physics-based and incurs erroneous estimation of degradation. Moreover, cycle-accurate (CA) simulations are computationally expensive. In this paper, a relatively fast yet accurate, adaptive waveform splitting (AWS) algorithm is proposed to enable fast calculation of workload-dependent device aging. The proposed algorithm has been adopted to perform aging estimation of large circuits under specific workload scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1