{"title":"在65nm CMOS中采用2D差分功率组合实现输出功率密度为74.5mW/mm2的53- 73ghz功率放大器","authors":"Wei Fei, Hao Yu, W. M. Lim, Junyan Ren","doi":"10.1109/RFIC.2013.6569580","DOIUrl":null,"url":null,"abstract":"Towards wide bandwidth and high output power density for 60GHz PA design in 65nm CMOS, this paper introduces a 2D differential power combining network by metamaterial-based zero-phase-shifter. Simultaneous distributed amplification and power combining can be achieved with improved performances in both power density and bandwidth. The PA measurement results show 13.2 dB gain, 8.7% PAE, 13dBm P1dB, and 20GHz bandwidth (53 to 73GHz) within an area of 0.268mm2.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A 53-to-73GHz power amplifier with 74.5mW/mm2 output power density by 2D differential power combining in 65nm CMOS\",\"authors\":\"Wei Fei, Hao Yu, W. M. Lim, Junyan Ren\",\"doi\":\"10.1109/RFIC.2013.6569580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Towards wide bandwidth and high output power density for 60GHz PA design in 65nm CMOS, this paper introduces a 2D differential power combining network by metamaterial-based zero-phase-shifter. Simultaneous distributed amplification and power combining can be achieved with improved performances in both power density and bandwidth. The PA measurement results show 13.2 dB gain, 8.7% PAE, 13dBm P1dB, and 20GHz bandwidth (53 to 73GHz) within an area of 0.268mm2.\",\"PeriodicalId\":203521,\"journal\":{\"name\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2013.6569580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 53-to-73GHz power amplifier with 74.5mW/mm2 output power density by 2D differential power combining in 65nm CMOS
Towards wide bandwidth and high output power density for 60GHz PA design in 65nm CMOS, this paper introduces a 2D differential power combining network by metamaterial-based zero-phase-shifter. Simultaneous distributed amplification and power combining can be achieved with improved performances in both power density and bandwidth. The PA measurement results show 13.2 dB gain, 8.7% PAE, 13dBm P1dB, and 20GHz bandwidth (53 to 73GHz) within an area of 0.268mm2.