K. Srinivasan, P. Muthana, R. Mandrekar, E. Engin, Jinwoo Choi, M. Swaminathan
{"title":"高速封装中嵌入电容增强信号完整性和功率完整性","authors":"K. Srinivasan, P. Muthana, R. Mandrekar, E. Engin, Jinwoo Choi, M. Swaminathan","doi":"10.1109/ISQED.2006.60","DOIUrl":null,"url":null,"abstract":"Improvements in electrical performance of microelectronic systems can be achieved by the integration of passive elements such as capacitors, resistors and inductors. The advantage of embedded passives is their low parasitic values. In this paper, enhancement of signal-integrity and power-integrity is investigated when a high-k planar capacitor is used as a power-ground plane, with embedded high-k discrete capacitors that have low ESI and ESR values as decoupling capacitors for SSN suppression. In order to capture the effects of embedded capacitor performance, a test-structure involving many signal-lines referenced to a power-ground plane was simulated. Simulation results show that the high-k planar capacitor reduces coupling of noise currents through the power-ground planes and helps improve the eye-opening. Simulation results have been quantified for a case, where a fewer number of embedded discrete capacitors helps reduce SSN more significantly than surface-mounts. Transient co-simulation of the signal delivery network (SDN) and the power-delivery network (PDN) are performed using Y-parameters","PeriodicalId":138839,"journal":{"name":"7th International Symposium on Quality Electronic Design (ISQED'06)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Enhancement of signal integrity and power integrity with embedded capacitors in high-speed packages\",\"authors\":\"K. Srinivasan, P. Muthana, R. Mandrekar, E. Engin, Jinwoo Choi, M. Swaminathan\",\"doi\":\"10.1109/ISQED.2006.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improvements in electrical performance of microelectronic systems can be achieved by the integration of passive elements such as capacitors, resistors and inductors. The advantage of embedded passives is their low parasitic values. In this paper, enhancement of signal-integrity and power-integrity is investigated when a high-k planar capacitor is used as a power-ground plane, with embedded high-k discrete capacitors that have low ESI and ESR values as decoupling capacitors for SSN suppression. In order to capture the effects of embedded capacitor performance, a test-structure involving many signal-lines referenced to a power-ground plane was simulated. Simulation results show that the high-k planar capacitor reduces coupling of noise currents through the power-ground planes and helps improve the eye-opening. Simulation results have been quantified for a case, where a fewer number of embedded discrete capacitors helps reduce SSN more significantly than surface-mounts. Transient co-simulation of the signal delivery network (SDN) and the power-delivery network (PDN) are performed using Y-parameters\",\"PeriodicalId\":138839,\"journal\":{\"name\":\"7th International Symposium on Quality Electronic Design (ISQED'06)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Quality Electronic Design (ISQED'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2006.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Quality Electronic Design (ISQED'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2006.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancement of signal integrity and power integrity with embedded capacitors in high-speed packages
Improvements in electrical performance of microelectronic systems can be achieved by the integration of passive elements such as capacitors, resistors and inductors. The advantage of embedded passives is their low parasitic values. In this paper, enhancement of signal-integrity and power-integrity is investigated when a high-k planar capacitor is used as a power-ground plane, with embedded high-k discrete capacitors that have low ESI and ESR values as decoupling capacitors for SSN suppression. In order to capture the effects of embedded capacitor performance, a test-structure involving many signal-lines referenced to a power-ground plane was simulated. Simulation results show that the high-k planar capacitor reduces coupling of noise currents through the power-ground planes and helps improve the eye-opening. Simulation results have been quantified for a case, where a fewer number of embedded discrete capacitors helps reduce SSN more significantly than surface-mounts. Transient co-simulation of the signal delivery network (SDN) and the power-delivery network (PDN) are performed using Y-parameters