基于贝叶斯机器学习的紧凑模型参数提取

Sachin Bhat, S. Kulkarni, C. A. Moritz
{"title":"基于贝叶斯机器学习的紧凑模型参数提取","authors":"Sachin Bhat, S. Kulkarni, C. A. Moritz","doi":"10.1109/ISVLSI59464.2023.10238563","DOIUrl":null,"url":null,"abstract":"Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIMCMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Model Parameter Extraction using Bayesian Machine Learning\",\"authors\":\"Sachin Bhat, S. Kulkarni, C. A. Moritz\",\"doi\":\"10.1109/ISVLSI59464.2023.10238563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIMCMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.\",\"PeriodicalId\":199371,\"journal\":{\"name\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI59464.2023.10238563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

紧凑模型是大规模集成电路仿真和新技术验证的重要组成部分。然而,随着技术的扩展,紧凑模型变得复杂,涉及到许多参数。因此,新器件技术的参数提取具有一定的挑战性。本文提出了一种紧凑模型参数抽取的概率方法。我们设计了一种贝叶斯优化技术,该技术专门用于有效提取BSIMCMG参数,用于拟合纳米线无结晶体管和14nm finfet。基于贝叶斯优化的提取结果与漏极电流数据拟合良好,对纳米线无结晶体管的归一化均方根误差为6.5%。对于14nm FinFET,该技术的漏极电流和电容数据分别达到6.3%和1.5%。这与现有的工具相比是有利的,并且改进了现有的工具,包括工业工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compact Model Parameter Extraction using Bayesian Machine Learning
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIMCMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Ferroelectric 2T-(n+1)C Cell to Implement AND-OR Logic in Memory 3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems CellFlow: Automated Standard Cell Design Flow Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies Revisiting Trojan Insertion Techniques for Post-Silicon Trojan Detection Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1