H. Koike, T. Tanigawa, Toshinari Watanabe, T. Nasuno, Y. Noguchi, M. Yasuhira, T. Yoshiduka, Yitao Ma, H. Honjo, K. Nishioka, S. Miura, H. Inoue, S. Ikeda, T. Endoh
{"title":"回顾STT-MRAM电路设计策略,以及40nm 1T-1MTJ 128Mb STT-MRAM设计实践","authors":"H. Koike, T. Tanigawa, Toshinari Watanabe, T. Nasuno, Y. Noguchi, M. Yasuhira, T. Yoshiduka, Yitao Ma, H. Honjo, K. Nishioka, S. Miura, H. Inoue, S. Ikeda, T. Endoh","doi":"10.1109/TMRC49521.2020.9366711","DOIUrl":null,"url":null,"abstract":"STT-MRAM is now an essential component for future low power consumption electronics. Recently, a number of STT-MRAM developments have been successively disclosed by major LSI vendors [1] –[9], and some of them announced that risk mass-production of STT-MRAM had started. This invited paper reviews, in this opportunity, STT-MRAM circuit design strategies, which cover memory cell design, sense amplifier (S/A) and reference generator (Refgen), and array architecture. Furthermore, as one example of STT-MRAM design, a 128Mb STT-MRAM chip using 40-nm standard CMOS and 3X-nm MTJ technology will be presented [10].","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Review of STT-MRAM circuit design strategies, and a 40-nm 1T-1MTJ 128Mb STT-MRAM design practice\",\"authors\":\"H. Koike, T. Tanigawa, Toshinari Watanabe, T. Nasuno, Y. Noguchi, M. Yasuhira, T. Yoshiduka, Yitao Ma, H. Honjo, K. Nishioka, S. Miura, H. Inoue, S. Ikeda, T. Endoh\",\"doi\":\"10.1109/TMRC49521.2020.9366711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"STT-MRAM is now an essential component for future low power consumption electronics. Recently, a number of STT-MRAM developments have been successively disclosed by major LSI vendors [1] –[9], and some of them announced that risk mass-production of STT-MRAM had started. This invited paper reviews, in this opportunity, STT-MRAM circuit design strategies, which cover memory cell design, sense amplifier (S/A) and reference generator (Refgen), and array architecture. Furthermore, as one example of STT-MRAM design, a 128Mb STT-MRAM chip using 40-nm standard CMOS and 3X-nm MTJ technology will be presented [10].\",\"PeriodicalId\":131361,\"journal\":{\"name\":\"2020 IEEE 31st Magnetic Recording Conference (TMRC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 31st Magnetic Recording Conference (TMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMRC49521.2020.9366711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Review of STT-MRAM circuit design strategies, and a 40-nm 1T-1MTJ 128Mb STT-MRAM design practice
STT-MRAM is now an essential component for future low power consumption electronics. Recently, a number of STT-MRAM developments have been successively disclosed by major LSI vendors [1] –[9], and some of them announced that risk mass-production of STT-MRAM had started. This invited paper reviews, in this opportunity, STT-MRAM circuit design strategies, which cover memory cell design, sense amplifier (S/A) and reference generator (Refgen), and array architecture. Furthermore, as one example of STT-MRAM design, a 128Mb STT-MRAM chip using 40-nm standard CMOS and 3X-nm MTJ technology will be presented [10].