碳纳米管电路的定时驱动放置

Chen Wang, Li Jiang, Shiyan Hu, Tianjian Li, Xiaoyao Liang, Naifeng Jing, Weikang Qian
{"title":"碳纳米管电路的定时驱动放置","authors":"Chen Wang, Li Jiang, Shiyan Hu, Tianjian Li, Xiaoyao Liang, Naifeng Jing, Weikang Qian","doi":"10.1109/SOCC.2015.7406983","DOIUrl":null,"url":null,"abstract":"Carbon nanotube field effect transistors (CNFETs), which use carbon nanotubes (CNTs) as the transistor channel, are promising substitution of conventional CMOS technology. However, due to the stochastic assembly process of CNTs, the number of CNTs in each CNFET has a large variation, resulting in a vast circuit delay variation and timing yield degradation. To overcome it, we propose a timing-driven placement method for CNFET circuits. It exploits a unique feature of CNFET circuits, namely, asymmetric spatial correlation: CNFETs that lie along the CNT growth direction are highly correlated in terms of their electrical properties. Our method distributes CNFETs of the same critical paths to different rows perpendicular to the CNT growth direction during both global and detailed placement phases, while optimizing the timing of these critical paths. Experimental results demonstrated that our approach reduces both the mean and the variance of circuit delay, leading to an improvement in timing yield.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Timing-driven placement for carbon nanotube circuits\",\"authors\":\"Chen Wang, Li Jiang, Shiyan Hu, Tianjian Li, Xiaoyao Liang, Naifeng Jing, Weikang Qian\",\"doi\":\"10.1109/SOCC.2015.7406983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotube field effect transistors (CNFETs), which use carbon nanotubes (CNTs) as the transistor channel, are promising substitution of conventional CMOS technology. However, due to the stochastic assembly process of CNTs, the number of CNTs in each CNFET has a large variation, resulting in a vast circuit delay variation and timing yield degradation. To overcome it, we propose a timing-driven placement method for CNFET circuits. It exploits a unique feature of CNFET circuits, namely, asymmetric spatial correlation: CNFETs that lie along the CNT growth direction are highly correlated in terms of their electrical properties. Our method distributes CNFETs of the same critical paths to different rows perpendicular to the CNT growth direction during both global and detailed placement phases, while optimizing the timing of these critical paths. Experimental results demonstrated that our approach reduces both the mean and the variance of circuit delay, leading to an improvement in timing yield.\",\"PeriodicalId\":329464,\"journal\":{\"name\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2015.7406983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

碳纳米管场效应晶体管(cnfet)是一种以碳纳米管(CNTs)作为晶体管通道的晶体管,是传统CMOS技术的有前途的替代品。然而,由于碳纳米管的随机组装过程,每个CNFET中碳纳米管的数量变化很大,导致了巨大的电路延迟变化和时序良率下降。为了克服这个问题,我们提出了一种CNFET电路的时序驱动放置方法。它利用了CNFET电路的一个独特特征,即不对称空间相关性:沿着CNT生长方向的CNFET在电学性质方面高度相关。我们的方法在全局和详细放置阶段将相同关键路径的cnfet分布到垂直于CNT生长方向的不同行,同时优化这些关键路径的时间。实验结果表明,我们的方法降低了电路延迟的平均值和方差,从而提高了时序良率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Timing-driven placement for carbon nanotube circuits
Carbon nanotube field effect transistors (CNFETs), which use carbon nanotubes (CNTs) as the transistor channel, are promising substitution of conventional CMOS technology. However, due to the stochastic assembly process of CNTs, the number of CNTs in each CNFET has a large variation, resulting in a vast circuit delay variation and timing yield degradation. To overcome it, we propose a timing-driven placement method for CNFET circuits. It exploits a unique feature of CNFET circuits, namely, asymmetric spatial correlation: CNFETs that lie along the CNT growth direction are highly correlated in terms of their electrical properties. Our method distributes CNFETs of the same critical paths to different rows perpendicular to the CNT growth direction during both global and detailed placement phases, while optimizing the timing of these critical paths. Experimental results demonstrated that our approach reduces both the mean and the variance of circuit delay, leading to an improvement in timing yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Per-flow state management technique for high-speed networks A 5-b 1-GS/s 2.7-mW binary-search ADC in 90nm digital CMOS Low-latency power-efficient adaptive router design for network-on-chip A multi-level collaboration low-power design based on embedded system A high speed and low power content-addressable memory(CAM) using pipelined scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1